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A B S T R A C T

Slope gradient and land use change are known to influence soil quality and the assessment of soil quality is
important in determining sustainable land-use and soil-management practices. In this study, soil quality indices
(SQIs) were developed by quantifying several soil properties to discriminate the effects of slope gradient and
land use change on soil quality in 480 km2 of agricultural land in Kurdistan Province, Iran. Three soil quality
indices (SQIs) were used. Each of the soil quality indices was calculated using two linear and non-linear scoring
methods and two soil indicator selection approaches, a Total Data Set (TDS) and a Minimum Data Set (MDS).
Nine soil quality indicators: pH, Electrical Conductivity (EC), Organic Carbon (OC), Cation Exchange Capacity
(CEC), Total Naturalized Value (TNV), Soil Erodibility (K), Porosity (P), Mean Weight Diameter (MWD), and
Bulk Density (BD) and soil loss rate were measured for 110 soil samples (0–30 cm depth). Soil quality indices
maps were developed using digital soil mapping methods. The> 10% slope class had the highest soil loss rate
and highest percentage of soils with very low quality (grade V) based on all SQIs. The results showed that soil
quality was better estimated using the Weighted Additive Soil Quality Index (SQIw) (r2 = 0.78) compared to
SQIa (the Additive Soil Quality Index) and SQIn (the Nemoro Soil Quality Index). The agreement values of all
SQIs for the non-linear scoring method were higher than the linear scoring method. The mean values of all SQIs
and the soil loss rate were higher and lower in rangeland than cropland, respectively, but they were not sig-
nificantly different because of intensive grazing. Slopes with a large gradient and where land use was converted
to agriculture were characterized by low values of SQIs, suggesting a recovery of soil quality through changing to
sustainable practices and abandoning over grazing in these areas.

1. Introduction

Soil quality is the capacity of soil to function to sustain plant and
animal productivities, to maintain or enhance water and air quality and
to support human health and habitation (Karlen et al., 1998). Soil
quality attributes are strongly related to topographic properties such as
slope position, slope gradient, and slope aspect (Khormali et al., 2009;
Wang et al., 2009; YuanJun and Mingan, 2008). Slope gradient as a
topographic factor is one of the most important factors influencing soil
quality because of its effects on variations in other soil properties and
crop yield (Ceddia et al., 2009; El Kateb et al., 2013; Paz-Kagan et al.,
2016).

Moreover, it is well known that cultivation of the soil affects its
quality (Allen et al., 2016; Khaledian et al., 2016: Oliveira et al., 2017;
Rojas et al., 2016; Stevenson et al., 2015; Vinhal-Freitas et al., 2017).
Conversion of natural lands to crop lands is one of the largest sources of

anthropogenic carbon emissions and has led to the release of about 200
Pg C during the past 250 years, globally (Fitzsimmons et al., 2004;
Scholes and Noble, 2001). Understanding of the relationships between
slope gradient, land use and soil quality in catchments is needed, par-
ticularly in hilly areas.

Different methods have been developed for soil quality evaluation.
Soil quality indices are a common and easy way to quantify soil quality
(Andrews et al., 2002a; Qi et al., 2009) and they can improve under-
standing of soil ecosystems and allow more efficient management (Qi
et al., 2009; Wang and Gong, 1998). Quantitative methods for calcu-
lating soil quality indices are based on using a three-step process in-
volving: indicator selection, indicator scoring, and integration of scores
into an index (Andrews et al., 2004, 2003; Larson and Pierce, 1994).
Total Data Sets (TDS) and Minimum Data Sets (MDS) have been widely
used to evaluate soil quality (Biswas et al., 2017; Cheng et al., 2016; Lin
et al., 2017; Nakajima et al., 2015; Sanchez-Navarro et al., 2015; Sione
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et al., 2017; Yao et al., 2014). Two scoring methods are usually used to
transform the selected soil indicators (Larson and Pierce, 1994). Three
approaches; the Additive Soil Quality Index (SQIa), the Weighted Ad-
ditive Soil Quality Index (SQIw), and the Nemoro Soil Quality Index
(SQIn) have been used for specific purposes and to integrate di-
mensionless indicators into soil quality indices (Askari and Holden,
2014; Askari et al., 2014; Biswas et al., 2017; Cheng et al., 2016; Das
et al., 2016; Gong et al., 2015; Lin et al., 2017; Mukhopadhyay et al.,
2014; Rahmanipour et al., 2014; Raiesi and Kabiri, 2016; Sione et al.,
2017). Recently, little attempt have been made to assess the relation-
ship between slope, land use, and soil quality indices (Askari et al.,
2015; Changwony et al., 2015; Sanchez-Navarro et al., 2015;
Thomazini et al., 2015; Zornoza et al., 2008), particularly in semi-arid
environments.

Mapping soil quality is especially important in defining poor quality
soils that occur due to high gradient slopes and land use change because
the exact locations needing special management practices. Direct
sampling followed by laboratory measurement is costly and time-con-
suming for detailed mapping of large areas. Digital soil mapping (DSM)
techniques have been developed to address these issues and produce
detailed maps of large areas with minimal sampling effort (McBratney
et al., 2003).

The Dehgolan area located in Kurdistan province is one of the most
agriculturally productive areas of Iran. Parts of the area are hilly with
large gradients yet have been cultivated to feed the growing population,
which has led to land degradation. Mapping soil quality can identify
areas with poor quality soils for agricultural purposes due to steep
gradients and can restrict agricultural use of these areas to avoid further
degradation.

The main objectives of this study are: (i) to assess soil quality of
agricultural land in Kurdistan Province, Iran, using two scoring
methods (linear and non-linear), two methods of indicator selection
(TDS and MDS) and three SQIs (SQIa, SQIw and SQIn); (ii) to determine
the best SQI, method of indicator selection, and scoring methods for this
region and (iii) to assess the effects of slope gradient and land use
change on soil quality degradation by producing digital soil quality
indices and soil loss rate maps.

2. Materials and methods

2.1. Site description

The study area is located in Kurdistan Province, Iran about 20 km
northeast of the city of Dehgolan and covers 480 km2 (Fig. 1). The
climate is semiarid with distinct differences between the dry and wet
seasons. Average annual precipitation and temperature are 399 mm and
10.2 °C, respectively. Soil moisture and temperature regimes are Xeric
and Mesic, respectively. Elevation varies from 1740 to 2845 m. The two
main land uses of the study area are cropland (approximately 88%) and
rangeland (determined using a 2015 Landsat image and ERDAS Imagine
software) (Fig. 1). Major parent materials are limestone, marl and al-
luvial. The major geomorphologic units consist of piedmont, plateaus,
hills, and mountains (based on a nested geomorphic hierarchy classi-
fication approach defined by Toomanian et al., 2006) and slope gra-
dients vary from gentle to very steep (Fig. 1). The major soils of the
study area (Soil Survey Staff, 2014) are Inceptisols (> 90%) and Enti-
sols.

2.2. Soil sampling and analysis

In the study area, a total of 110 soil samples were collected
(0–30 cm depth). Samples were distributed between two land uses with
15 samples taken from rangeland and 95 from cropland (Fig. 1). The
samples were distributed between four slope classes with 33 samples on
0–2% slopes, 26 on 2–5%, 18 on 5–10%, and 33 on> 10% slopes
(Fig. 1). Soil pH and electrical conductivity (EC) were measured in a

saturated paste using a pH electrode (McLean, 1982) and conductivity
meter (Rhoades, 1982). Organic carbon was determined using wet
combustion (Nelson and Sommers, 1982). Cation exchange capacity
(CEC) was measured using the 1 N ammonium acetate (at pH 7.0)
method (Sumner and Miller, 1996). The lime content as the total neu-
tralizing value (TNV) was determined by a volumetric method (Sparks
et al., 1996). Soil bulk density (BD) and particle density (PD) were
determined using both core (Grossman and Reinsch, 2002) and Pycn-
ometer methods. Soil porosity was calculated using results from soil
bulk density and partial density (Danielson and Suterland, 1986). In
calcareous soils, calcium is an important factor determining aggregate
stability and consequently infiltration rates that can significantly affect
soil erodibility (K). Therefore, the application of Wischmeier and
Smith's (1978) nomograph to calcareous soils in arid and semi-arid
regions may lead to inaccurate assessment of K (Vaezi et al., 2008).
Therefore the soil erodibility factor (K) was computed using Vaezi
et al.’s (2008) method ((Eq. (1)).

= − × − × −− −K CC TNV PE0.0123 5.7 10 5.2 10 0.001925 5 (1)

where CC is clay content (%), TNV is total neutralizing value (%), PE is
permeability (cm h−1), and K is in t h MJ−1 mm−1. Soil permeability
was determined based on the final infiltration rate using double-ring
infiltrometers (Scholten, 1997) in the field.

The method of Kemper and Rosenau (1986) was used to determine
mean weight diameter (MWD) of soil aggregates using the following
equation (Eq. (2)):
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where MWD is the mean weight diameter of water stable aggregates, Xi

is the mean diameter of each size fraction (mm), and Wi is the pro-
portion of the total sample mass in the corresponding size fraction after
deducing the stone mass as indicated above.

2.3. Soil quality index assessment

2.3.1. Total and minimum data set
The nine soil properties that were measured were used in a TDS and

were selected for their sensitivity in soil quality evaluation. The prop-
erties: OC, BD, EC, CCE, CEC, pH, and MWD have been suggested by
several authors as useful soil quality indicators because of their influ-
ence on soil fertility, supply of nutrients, pH, root growth, soil porosity,
soil structure, and aggregate stability (Biswas et al., 2017; Cheng et al.,
2016; Das et al., 2016; Lima et al., 2013; Mukhopadhyay et al., 2014; Qi
et al., 2009; Rahmanipour et al., 2014; Sanchez-Navarro et al., 2015;
Sione et al., 2017; Yao et al., 2014). Also to more accurately char-
acterize the soils and take into account both natural processes and
human impacts due to agricultural practices and land use change the
soil erodibility factor was included as part of the TDS. Principal com-
ponents analysis (PCA) was conducted to reduce dimensionality in the
data set and determine the most important properties to include in the
MDS (Doran and Parkin, 1994; Rahmanipour et al., 2014; Yao et al.,
2014). For each PC with an eigenvalue> 1, soil variables with high
factor loadings were assumed to be the soil properties that best re-
present changes in soil quality. More specifically, these were the soil
properties that had absolute values within 10% of the highest factor
loading (Andrews et al., 2002a; Govaerts et al., 2006; Sharma et al.,
2005).

2.3.2. Indicator scoring
Each indicator/soil property from the TDS was transformed into a

unitless score between 0 and 1 using both linear and non-linear scoring
methods. There are three standard scoring functions (SSF) for SQIs
which indicate whether the property has a ‘negative’ or ‘positive’ re-
lationship to soil quality or if it is positively related within an ‘optimum
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