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This paper is concerned with a partitioning problem. One of the applications, and the 
motivation for this research, is the problem of class formation for training and retraining 
sessions at large electricity distributors. Two different approaches are developed. One 
is based on the Quadratic Multiple Knapsack formulation and Lagrangian relaxation. 
The other is a matheuristic developed as an amalgamation of Genetic Algorithms and 
Integer Programming. The approaches are tested by means of computational experiments. 
Both heuristics outperformed the direct application of quadratic programming, with the 
Lagrangian relaxation based approach performing the best on average, and the Genetic 
Algorithm based approach performing the best on the larger test cases.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

This paper is concerned with the combinatorial optimisation problem where the union of disjoint sets F1, . . . , F K (re-
ferred to as families) must be partitioned into sets S1, . . . , SN in such a way that each Si is either empty, or has cardinality 
between ai and bi , i.e. ai ≤ |Si | ≤ bi , and each nonempty set Si must contain elements from at least pi and at most qi

families. All ai , bi , pi , and qi are given.
There is a cost ci, j associated with the inclusion of each element j of F1 ∪ . . . ∪ Fn into each set Si . For any two distinct 

families Fk and Fl , and any set Si , the cost bk,l is incurred for the simultaneous presence of elements from both families Fk
and Fl in Si . This cost does not depend on the number of elements from Fk and Fl in Si . The objective is to minimise the 
total cost associated with the partition S1, . . . , SN .

The above mentioned combinatorial optimisation problem was motivated in particular by the problem of class formation 
for training and retraining at large electricity distributors. Such organisations typically have thousands of workers of different 
types, and some also provide training to their contractors and to third parties. Due to the multitude of hazards that exist 
when working with high voltages, at heights, or in confined spaces, local laws often require all such workers to undergo 
regular safety, technical, and professional training.

Many of these workers, referred to as students for the purpose of this study, have very different learning outcomes from 
these courses, different learning styles, different levels of education or English proficiency, and different levels of technical 
proficiency for certain tasks. Although assigning only one type of student into any class enables the training delivery to 
be better tailored to the needs of the specific group, in some cases it is beneficial to combine several compatible types of 
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students in the same class to facilitate the exchange of knowledge and experience between student types. Furthermore, due 
to the cost of delivering training and the scarcity of training resources, it is often not possible to run segregated classes, 
and some undesirable blending of student types may be necessary. Each class can either be empty, in which case it will 
be cancelled with no penalty, otherwise it must contain between a minimum and a maximum number of students, and 
between a minimum and maximum number of student types.

Each potential class is associated with a specific date at which it will be conducted. On the other hand, each student, 
who is of exactly one type, should complete their training by a certain date, resulting in a penalty (cost) incurred for 
assigning a student to a particular class. Another type of penalty reflects the incompatibility of the student types assigned 
to the same class. The objective is to minimise the total penalty. When a single course is considered, the above leads to the 
combinatorial optimisation problem studied in this paper. We denote the problem studied in this paper to be “Partition into 
Inhomogeneous Classes” (PIC).

The considered combinatorial optimisation problem is distinct from, but shares certain similarity with, the Graph Par-
titioning Problem (GPP) [1]. This problem arises in various practical situations, for example: partitioning subroutines that 
are compiled into computer code into clusters, such that the communication between clusters is minimised [2]; assigning 
data or processes evenly to processors, such that inter-process communication is minimised in parallel computing environ-
ments [3]; in aircraft control, where the flow of aircraft within blocks is maximised and flow of aircraft between blocks 
is minimised [4]; partitioning the electronic subcircuits in very large-scale integration (VLSI) systems, such that the elec-
trical connections between partitions is minimised [5]; partitioning a power network into so-called islands to prevent the 
propagation of cascading failures [6,7]; for route planning along road networks [8,9]; and in many other domains. Although 
the combinatorial optimisation problem considered in our paper and the GPP are different, each provides an insight in the 
design of solution techniques for the other.

Several particular cases of the GPP, including Integer Programming (IP) models for each case, are discussed in [10]. The 
authors take advantage of the graph structure when clustering. They also discuss several valid inequalities and facet-defining 
inequalities for the GPP. A column generation approach is presented in [2], which the authors tested on graphs with between 
30 and 61 nodes, and between 47 and 187 edges. For the 12 test cases the authors considered, their proposed approach 
provided integer solutions for all but two, and for those, solutions obtained by a branch-and-bound scheme were very close 
to the fractional solutions provided by column generation. Our paper also presents IP models for the considered partitioning 
problem, but is concerned with a Lagrangian relaxation and a matheuristic, and is focused on solving large instances with 
hundreds of classes and thousands of students.

The problem considered in our paper is also related to the Quadratic Multiple Knapsack Problem (QMKP), which is a 
combination of the multiple knapsack and quadratic knapsack problems. The QMKP received little attention in the literature 
until recently, and most solution approaches are based on meta-heuristics [11–14]. In particular, greedy and genetic algo-
rithms (GA) for the QMKP are discussed in [14]. The author presents two greedy heuristics that build solutions by choosing 
objects according to their value densities, and two GA heuristics. One GA is a standard implementation, while the other is 
extended with greedy techniques that probabilistically favour objects of high value density. The algorithms are tested on 20 
problem instances, and the extended GA is reported to perform best on all but one test case. In our paper we present a 
matheuristic that is an amalgamation of Genetic Algorithms and IP.

A Lagrangian relaxation based approach to solving the QMKP exactly is presented in [15], whereby a tighter bound is 
computed using the subgradient method. The proposed approach is able to optimally solve instances with up to 400 binary 
variables. In our paper we also consider a Lagrangian relaxation based approach, but focus on problems with between 
17 697 and 267 393 binary variables (and between 42 656 and 367 232 for the linearised models). The size of our problem, 
together with the complexity results presented in our paper, leads to the aim of obtaining a good approximation solution, 
which is compared with the alternative approach that is an amalgamation between Genetic Algorithms and IP.

The considered problem was previously studied in [16]. In contrast to [16] our current paper is focused on significantly 
larger test cases, which has greater significance for practical applications. The change of focus necessitated the revision of 
the proposed approaches, resulting in superior performance of the designed algorithms on the larger test cases.

The remainder of this paper is organised as follows. Section 2 presents a linearly constrained quadratic programming 
formulation, as well as its linearisation, for the studied problem. Section 3 analyses the complexity of the considered parti-
tioning problem. Section 4 discusses a Lagrangian relaxation of the quadratic program. Section 5 presents the first approach, 
which is a heuristic based on the Lagrangian relaxation. Section 6 presents the second approach, which is an amalgamation 
of Genetic Algorithms and Integer Programming. Section 7 discusses the results of the computational experimentation. Our 
concluding remarks are given in Section 8.

2. Quadratic programming formulation

Let N = {1, · · · , N}, M = {1, · · · , M}, and K = {1, · · · , K } be the set of available classes, the set of students to be 
assigned, and the set of student types respectively. Denote the penalty of assigning student j ∈ M to class i ∈ N by ci, j , 
and the penalty of pairing student types k ∈ K and l ∈ K together in the same class by bk,l . Each student has exactly one 
type, and the set of students who are of type k is represented by Tk , k ∈ K. Each student must be assigned to exactly one 
class, but not all classes must be run. Each class i ∈ N that is run must contain at least ai and at most bi students, and at 
least pi and at most qi student types. Students or student types cannot be assigned to classes that are not run. The binary 
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