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a b s t r a c t

Lithium batteries are developed rapidly in electric vehicles, and the accurate online evaluation of
available capacity for ensuring their safety and functional capabilities is challenging due to the stability of
initial value, extensive computational requirements and convergence issues. This paper proposes an
improved chaos genetic algorithm based method to evaluate the state of charge of batteries with low
computational complexity and high initial stability. Based on a combined state space model employed to
simulate battery dynamics, an improved chaos genetic algorithm based method which comprises chaos
genetic algorithm, Ampere hour approach and adaptive switch mechanism is advanced to predict the
available capacity. The method is validated by the experiment data collected from battery test system.
Results indicate that the improved chaos genetic algorithm based method shows great performance with
low computational complexity and is little influenced by the given initial value.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays, LiFePO4 batteries are developed rapidly in electric
vehicle (EV) and hybrid electric vehicle (HEV). Compared to other
lithium batteries such as LiCoO2, LiMn2O4 and LiNiO2, LiFePO4 ones
provide benefits of low cost, safety, longevity and environmental
compatibility. The rate capability of LiFePO4 is a critical issue for the
commercialization of Lithium batteries in HV and HEV, which is an
integral part of their battery management systems [1]. Accurate
estimation of available capacity is important for the safety and
functional capabilities of the whole system. Failure cases might
bring reduced performance, operational damage and even disas-
trous results.

As a value incapable of being detected directly, cell SOC is usu-
ally accessed by the methods based on the characteristics of the
batteries. Many different types of models have been developed for
batteries, such as electrochemical model, preisach model, imped-
ance based model and electrical circuit model (ECM). Electro-
chemical model is very computationally expensive so that its use
for online estimator design occurs to be impractical [2]. A simplified
electrochemical model with a certain cost of accuracy was pre-
sented in Ref. [3]. Reference [4] presents an adaptive discrete Pre-
isach model and its deformation algorithm to describe the
relationship between open circuit voltage (OCV) and state of charge
(SOC), but the OCV cannot be measured online. ECM is extensively

used for battery state estimation because of their relatively simple
mathematical structure. Based on a first-order circuit with one RC
network to simulated battery dynamics, reference [5] employs an
adaptive gain slidingmode observer to evaluate cell SOC. Combined
with experience equations, reference [6] uses a second-order cir-
cuit with two RC networks to simulate battery characteristics.
Reference [7] discusses the normal equivalent circuit models with
different number of RC networks to model the polarization char-
acteristic and the dynamic behavior of the lithium-ion battery, and
accesses cell SOC based on the online identification of its open-
circuit voltage.

The LiFePO4 battery is a nonlinear dynamic system, so is its
established battery model. Typical model-based estimation algo-
rithms [8] include Luenberger observer, sliding-mode observer and
Kalman Filter. Kalman filter is a most common selection for
accessing cell SOC. It operates recursively on streams of noisy input
data to produce a statistically optimal estimate of the underlying
system state. Literature source [9] uses discrete wavelet transform
(DWM) based denoising technique for discharging and charging
voltage signals, inverse DWMof the filtered detailed coefficients for
signal reconstruction, and ECM-based algorithm with extend Kal-
man filter (EKF) for SOC estimation. It may eliminate measurement
noise effectively. Reference [10] uses EKF to update the battery pack
parameters by the real-time measured data and the unscented
Kalman filter (UKF) to estimate the battery pack state-of-charge.
Based on a multi-cell battery model, reference [11] uses a tradi-
tional EKF to evaluate cell SOC. Reference [12] adopts EKF forE-mail address: network_hawk@126.com.
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evaluation when there exists high SOC sensitivity versus cell ter-
minal voltage. However, whether EKF or UKF [13] based methods,
they rely significantly on the given initial value. Endowed a more
accurate value, the predicted value would converge to the real one
more quickly. Otherwise, the estimation accuracy will decline and
the convergence can even be lost in some cases. Reference [14]
introduces an unscented particle filter (UPF) method with a
degradation method into the remaining useful life prediction of
battery. Based on a combinedmodel considering the drift current of
the sensor, reference [15] adopts UPF to access cell SOC. Reference
[16] proposes a stochastic model based UPF method. Particle filter
(PF) methods employ random particles satisfied with specified
distribution to represent cell available capacity for solving this
problem but bring great amount of computation.

Newton’smethod is one of themost popular numerical methods
to solve nonlinear equations. It is simple in form and converges
quadratically. However, calculating on the Jacobian matrix and its
inverse is quite time consuming, and the method may fail to
converge which will result in an oscillation between points [17].
Improved Newton’s methods like Broyden’s method have certain
advantages, such as computation amount reduction, but they still
have the same disadvantage of approaching locally.

Genetic algorithm (GA) search parallel from a population of
points through the bio-inspired operations of selection, crossover
and mutation [18]. It has the ability to avoid being trapped in local
optimal solution like traditional methods, such as Newton’s
method and Broyden’s method. Nevertheless, GA has the weakness
such as slow convergence, easy to be premature and impractical to
guarantee converging to global optimization. Chaos is a common
phenomenon in nature, which has many characteristics, such as
initialization sensitivity, ergodicness and disciplinarians. It may
come through all states with rules in itself. Reference [19] uses the
logic map function to produce the chaotic initial population.
Reference [20] employs the mixing of chaotic and non-chaotic in-
dividuals to represent the initial population and the logic function
as a genetic operator in the crossover process to improve the rate of
calculation. Chaos genetic algorithm (CGA) combines the advan-
tages of GA’s global search ability and chaos’ attributes like effective
ergodicity [21]. Nevertheless, the application of CGA enlarges
computational complexity.

Compared to other methods, Ampere hour (AH) counting
method is the basic approach followed directly by the definition of
SOC and requires a small amount of computation. However, it is
also sensitive to the given initial available capacity and needs reg-
ular re-calibration.

To address the existing issues in battery SOC estimation, this
paper presents an improved chaos genetic algorithm (ICGA) based
method, which combines the global search ability of genetic algo-
rithm with the randomicity and ergodicity of chaos, to search the
initial available capacity of batteries, while introducing the adap-
tive switch mechanism and AH counting approach to reduce
calculation amount. It is organized as follows. This paper first em-
ploys a combined state space model to evaluate battery dynamics,
such as open-circuit voltage, available capacity, polarization effect
and transient response. Then an ICGA based method is used for the
SOC prediction of LiFePO4 batteries at different discharging and
charging current. Finally results of lab tests on 18650 size cells with
pulse discharging current, contrasted with different prediction
methods, are presented.

2. Battery modeling

Since SOC is unable to be detected directly, a precise cell model
about SOC must be established first for LiFePO4 batteries.

2.1. Dual polarization (DP) model

Besides simple to understand, an effective electrical circuit
model may represent the entire dynamic behavior of cell. DP model
[6], as depicted in Fig. 1, is a two-order electrical circuit model. It
includes three parts: open-circuit controlled voltage (Voc), ohmic
resistance Ro and the shaded RC parallel network which is
composed of electrochemical polarization resistance (Rpa), elec-
trochemical polarization capacitance (Cpa), concentration polari-
zation resistance (Rpc) and concentration polarization capacitance
(Cpc). DP model may characterize the transient response and po-
larization effect of cell, such as electrochemical and concentration
polarization effect. Nevertheless, it does not describe the nonlinear
relation among open-circuit voltage, charge and discharge rate
current and SOC.

2.2. Experience model

Experience model usually describes cell model as

VðtÞ ¼ VocðSOCðtÞÞ � iðtÞRo ¼ ½K0;K1;K2;K3;K4�
½1; SOCðtÞ;1=SOCðtÞ; lnðSOCðtÞ; lnð1� SOCðtÞÞÞ�T � iðtÞRo (1)

where VðtÞis the terminal voltage and Kiði ¼ 0;1;2;3;4Þ is the co-
efficient. The experience model gives a description between cell
SOC and open circuit voltage VocðSOCðtÞÞ, but does not characterize
the temperature, transient response and hysteresis effect of cell. So
there exists certain difference between the real voltage and the
output of experience model.

2.3. Combined state space model for LiFePO4 batteries

Ampere Hour (AH) method usually defines SOC as the ratio of
standard available capacity to the nominal capacity (Cap),

SOCðtÞ ¼ SOC0 �
1

Cap

Zt

o

hðiðtÞ; TðtÞÞiðtÞdt (2)

where SOC0 is the initial value, SOC(t) is the cell SOC at the time t,
and hðiðtÞ; TðtÞÞ is cell coulombic efficiency which differs with
charge and discharge rate current iðtÞ (assumed positive for
discharge, negative for charge) and cell temperature TðtÞ.

Based on the established SOC definition equation, experience
and DP model, a combined state space model is achieved for
LiFePO4 cells [6],

Fig. 1. Electrical circuit model for LiFePo4 batteries.
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