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a b s t r a c t

The efficient calibration of rainfall-runoff models is a difficult issue, even for experienced hydrologists.
Therefore, fast and high-quality model calibration is a valuable improvement. This paper describes a
novel methodology and software for the optimisation of a rainfall-runoff modelling using a genetic algo-
rithm (GA) with a newly prepared concept of a random number generator (HRNG), which is the core of
the optimisation. The GA estimates model parameters using evolutionary principles, which requires a
quality number generator. The new HRNG generates random numbers based on hydrological information
and it provides better numbers compared to pure software generators. The GA enhances the model cal-
ibration very well and the goal is to optimise the calibration of the model with a minimum of user inter-
action. This article focuses on improving the internal structure of the GA, which is shielded from the user.
The results that we obtained indicate that the HRNG provides a stable trend in the output quality of the
model, despite various configurations of the GA. In contrast to previous research, the HRNG speeds up the
calibration of the model and offers an improvement of rainfall-runoff modelling.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

Hydrological data contain large amounts of useful information,
which can be fully utilised by rainfall-runoff models that describe
the hydrological processes in nature in mathematical terms (Singh
and Woolhiser, 2002). Rainfall-runoff models are defined as an
interaction of the physical processes that describe the structure
and behaviour of observed basins (Beven, 2012). The outputs of
well-calibrated models are applied, for instance, in the prediction
of flash floods or in assessments of water consumption in vegeta-
tion cover. The rainfall-runoff models are primarily designed to
estimate basin parameters where measurement is scarcely feasible
or even impossible (Robertson and Kirkegaard, 2006).

This article focuses on the Sacramento soil moisture accounting
model (SAC-SMA), which is a conceptual water balance physical
model that is based on the principles of water movement in a
watershed (Burnash, 1995). Calibration configures the behaviour
of the modelled catchment based on historical data (Sorooshian
et al., 1993). This suggests that the calibration of the model is an
important part of modelling and that the credibility of the output
is closely associated with the user’s experience of the model
(Smith et al., 2003).

Optimisation algorithms make the model calibration easier for
users with limited technical knowledge. These algorithms enhance
the quality of manual calibration automatically, giving a significant
improvement (Tolson and Shoemaker, 2007). Genetic algorithms
(GAs) are the most common group of optimisation algorithms for
rainfall-runoff models, and are based on the principles of evolution
(Holland, 1992). The majority of GA research and rainfall-runoff
models try to achieve better results by modifying the GA parame-
ters or through various multi-step procedures which calibrate
model parameters sequentially in a precisely defined sequence.
Gupta et al. (2003) use a vector of estimated model output gener-
ated using model parameters. The goal is to find the vector with
the best estimate of the parameters so that the observed and mod-
elled outputs are as close as possible. Vector items represent vari-
ous statistical functions, which determine the quality of a
calibrated model. Another technique is to select a function that
specifies the quality of a calibration. This function helps GA to find
the best solution. The function is selected according to statistical
indicators to obtain the best output (Kisi et al., 2013).

Current optimisation techniques are not user-friendly, espe-
cially for hydrologists who do not have the necessary background
in the software architecture of the GA framework. Users of these
optimisation techniques/frameworks must learn their application
or architecture, and this is usually tedious, complex, and discour-
aging. Moreover, this is exacerbated whenever the application
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has to be reviewed; that is, for each different period or basin. Incor-
rect parameter settings can cause needless deterioration in the
quality of the model. Therefore, the optimisation technique should
require minimal user configuration in order to be useful (Fonseca
and Fleming, 1995).

The primary motivation of this article is to improve the calibra-
tion of the model by the genetic algorithm with minimal user con-
figuration of the genetic algorithm. This should enable a faster and
more efficient utilisation of the information stored in the environ-
mental data, which can be extracted by the rainfall-runoff model
with the best calibration. Although the internal architecture of
the genetic algorithm must be modified to achieve this, any inter-
vention in the SAC-SMA model must be minimal to ensure that the
user does not need to understand this additional configuration of
the model. This approach provides an important improvement to
the output of the SAC-SMA model.

The core of the genetic algorithm is a random number generator
that estimates the values of the model’s parameters. The generator
usually produces numbers with a uniform probability distribution
(Gallagher and Sambridge, 1994; Harrison, 2010). This paper
shows that the distribution function of the generator influences
the quality of the model output. We present a new concept of
the genetic algorithm for optimising the SAC-SMA model with a
new random number generator.

2. Methodological background

2.1. Sacramento soil moisture accounting model

Sacramento soil moisture accounting model is one of the most
widely used rainfall-runoff models. This model is used to convert
precipitation input into discharge outputs. The well-designed
architecture of SAC-SMA provides motivation for further research
and development. This model imitates two-dimensional heteroge-
neous runoff processes for river catchments.

This model operates using a system of water reservoirs (zones).
An ability of retention and draining water storage in the upper
zone affects the infiltration of rainfall in the lower zone layers.
Infiltrated water is then: (1) retained; (2) pumped by vegetation
during evapotranspiration; (3) infiltrated into low-lying system
zones; or (4) channelled into a river network. The total streamflow
is the sum of all of the partial zone runoffs.

The SAC-SMA model can be configured by 29 model parame-
ters. The first five model parameters and its five coefficients
determine a rate of outflow from the model reservoirs. The next
seven parameters define static attributes of modelled basin (e.g.
afforestation coefficient). The 12 remaining parameters determine
monthly adjustment factors for potential evapotranspiration.
Most of the second kind of model parameters must be estimated
using historical hydrological data, (Burnash, 1995). It should be
noted that a maximum of 10 parameters effectively calibrate
the model.

2.2. Validation of the model calibration

Validation of the model confirms the quality of the model cali-
bration. Various statistical indicators are used for model validation
(Zhang et al., 2012). This study primarily focuses on the statistical
method and uses the six most fundamental indicators, as sum-
marised below (Chai and Draxler, 2014):

1. Average absolute monthly volume error

AMVE ¼
Pm

i¼1jMSi �MQijPm
i¼1MQi

100 ð1Þ

where M is number of months, MS is monthly simulated volume,
MQ is monthly observed volume.

2. Daily average absolute error

DAE ¼ 1
n

Xn
i¼1

jQi � Sij ð2Þ

where S is simulated discharge, Q is observed discharge, n is number
of events.

3. Root mean square error

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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4. Monthly bias

MB ¼ 8:64
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5. Correlation coefficient
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6. Nash–Sutcliffe model efficiency coefficient

E ¼
Pn

i¼1ðQi � SiÞ2Pn
i¼1ðQi � �QÞ2

ð6Þ

where, Q is mean of observed discharge.
The units of all of the used indicators as described by Eqs. (1)–

(6) are illustrated in Table 1.

2.3. Genetic algorithm

The genetic algorithm (GA) is an evolutionary technique that is
inspired by processes in nature. The structure of the GA is based on
Darwin’s theory of natural selection. Each individual is a candidate
for the solution of a given problem. A fitness function quantita-
tively expresses the quality of the solution. The task of the GA is
to create a ‘‘breed” of the individual with the best fitness function.
The GA evaluates a population which is composed of chromo-
somes, which contain data in a similar way to biological chromo-
somes (Gallagher and Sambridge, 1994). Each chromosome in the
population is a set of genes which are coded using binary or real
values. The GA attempts to discover the combination of genes
which maximises or minimise the fitness function (Holland,
1992). To achieve this, the GA uses equivalents of natural genetic
operators; for instance selection, crossover and mutation (Bäck
et al., 2000).

New sets of chromosomes are appraised over a number of gen-
erations. A fitness value is calculated and assigned to each new
estimated chromosome (Mitchell, 1998). The fitness value provides
information about the quality of a chromosome and this is used for
the probabilistic selection of chromosomes for the next generation.
This selection is analogous to natural selection. The GA is termi-
nated if predetermined criteria occur. The new chromosome is a
result of genetic operations, the most significant of which are
crossover and mutation. Both of these operations are random pro-
cesses with a defined probability. The crossover takes two chromo-
somes as parents and produces a new chromosome by exchanging
their chromosomes with each other. Parts of chromosomes for
exchange are selected at random and can be determined at a single
point or at multiple points. The GA can become trapped at a local
minimum despite the crossover operation. The mutation operation
can avoid this disadvantage because it changes the values of genes
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