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a b s t r a c t

Through the lens of game theory, cooperation is frequently considered an unsustainable strategy: if
an entire population is cooperating, each individual can increase its overall fitness by choosing not to
cooperate, thereby still receiving all the benefit of its cooperating neighbors while no longer expending
its own energy. Observable cooperation in naturally-occurring public goods games is consequently of
great interest, as such systems offer insight into both the emergence and sustainability of cooperation.
Here we consider a population that obeys a public goods game on a network of discrete regions (that
we call colonies), between any two of which individuals are free to migrate. We construct a system of
piecewise-smooth ordinary differential equations that couple thewithin-colonypopulationdynamics and
the between-colony migratory dynamics. Through a combination of analytical and numerical methods,
we show that if the workers within the population migrate sufficiently fast relative to the cheaters,
the network loses stability first through a Hopf bifurcation, then a torus bifurcation, after which one or
more colonies collapse. Our results indicate that fast moving cheaters can act to stabilize worker–cheater
coexistence within network that would otherwise collapse. We end with a comparison of our results
with the dynamics observed in colonies of the ant species Pristomyrmex punctatus, and argue that they
qualitatively agree.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Public goods dilemmas occur when an individual must choose
whether or not to contribute to a commonly available (public) good
(Archetti and Scheuring, 2012; Fehr and Gächter, 2000; Hauert
et al., 2008; Oakland, 1987; Perc et al., 2013; Wakano et al.,
2009). Contributing benefits the population by increasing the total
amount of the public good, but it comes at a cost to the individual
(through energy expenditure, for example), whereas choosing not
to contribute comes at no cost to the individual, who still shares
in benefits from the public good. Thus individuals must choose
between what is best for themselves and what is best for the
population, and in the basic public goods game, benefittingwithout
contributing is strictly speaking always the better choice (Archetti
and Scheuring, 2012; Perc et al., 2013). Consequently, the dilemma
inherent in public goods games have been used as a framework
for studying the origin of cooperation and other group interactions
(Archetti and Scheuring, 2012; Levin, 2014). Such dilemmas are
most naturally found in biological systems involving populations
living closely enough together so that individual efforts are in-
evitably shared, for instance in bacterial species (Damore and
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Gore, 2012) such as Escherichia coli (Vulić and Kolter, 2001) and
Myxococcus xanthus (Velicer et al., 2000), in social insects such
as ants (Dobata et al., 2011) and bees (Martin et al., 2002), and
even in tumor cells, in which a subpopulation of cells produce
an insulin-like tumor growth factor (Archetti et al., 2015; Gerlee
and Altrock, 2017). While some such systems manage to persist
in the presence of parasitic genetic cheaters (e.g., the queenless
ant species Pristomyrmex punctatus, Dobata et al., 2011), others
collapse (e.g., the Cape honey beeMartin et al., 2002), leading to the
natural question of what mechanisms foster these two outcomes.
Many suchmechanisms for sustaining cooperationhave been stud-
ied, most notably kin selection (Hamilton, 1964; Lehmann and
Rousset, 2014), rewarding cooperation (Szolnoki and Perc, 2010)
and punishing defection (Fehr and Gächter, 2000; Riehl and Fred-
erickson, 2016), or through interspecies competition: competition
with a common opponent can stabilize cooperationwithin a public
goods game within microbial species (Celiker and Gore, 2012). Kin
selection is often quantified by Hamilton’s rule: it is beneficial for
an individual to behave altruistically toward another individual if
the product of the increase in offspring of the recipient and the
genetic relatedness of the two is greater than the reproductive cost
of the altruistic act (Hamilton, 1964). Hamilton’s rule helps explain
the evolution of altruism, especially in social insects such as ants,
bees, and wasps (Lehmann and Rousset, 2014), though it is usually
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not used to address the stable existence of parasitic cheaters, as
in the case of Pristomrymex punctatus. Aside from kin selection,
no other cooperation-stabilizing mechanism has been observed in
either of the previously mentioned ant or bee systems (Dobata
and Tsuji, 2013; Martin et al., 2002), indicating that there are still
unexplored mechanisms by which cooperation can be sustained.

Our focus is on species that reproduce via parthenogenesis
and occupy two or more discrete regions, such as colonies, be-
tween which individuals are free to migrate. Parthenogenesis is
a form of asexual reproduction in which an embryo develops
into an organism without fertilization, and consequently offspring
are clones of their mother (Mittwoch, 1978). This simplifies the
task of mathematically modeling reproductive competition due to
phenotypic variations, as genetic variability is minimized between
generations. Moreover, parthenogenetic reproduction is common
in nature, and has been observed in species ranging from aphids
(Simon et al., 2002), ants (Dobata et al., 2011; Dobata and Tsuji,
2013; Tsuji and Dobata, 2011), and bees (Martin et al., 2002) to
zebra sharks (Dudgeon et al., 2017) and Komodo dragons (Watts
et al., 2006).

Migration often plays a large role in many species’ survival.
Driven by internal or external stimuli, species as simple as bac-
teria (Turnbull et al., 2001) to complex organisms such as fish
(Partridge, 1982), birds (Thompson et al., 1974), and countless
others depend on their collective ability to migrate to evade en-
vironmental or ecological stress. Mathematical models for migra-
tion have expanded our understanding of the formation of spa-
tial patterns in bacteria (Tyson et al., 1999), flocking behavior of
birds (Heppner and Grenander, 1990), and colony-site selection in
honeybees (Reina et al., 2017). Here, we develop a mathematical
model connecting the well-studied fields of public goods games
and migratory dynamics to study the stabilization of cooperation
by migration in populations with genetic cheaters.

For the remainder of this paper, we will call the individuals
that cooperate ‘‘workers’’, those that do not ‘‘cheaters’’, and the
discrete regions they occupy ‘‘colonies’’. To model the role that
cheaters play in such populations, we propose a mathematical
model coupling within-colony population dynamics and between-
colony migratory dynamics. While our model shows that cheaters
drive down the fitness of an individual colony, it also makes the
unexpected prediction that fast cheaters can actually stabilize a
network of colonies by saving individual colonies from collapse.
The remainder of this paper is organized as follows: in the follow-
ing section, we develop a system of ordinary differential equations
modeling the population dynamics of workers and cheaters in a
network ofN colonies, connected according to a given connectivity
matrix B. We then analyze the behavior of a single colony, to deter-
mine conditions under which workers and cheaters can coexist. In
Section 3, we begin our investigation of the effects of migration by
considering a two-colony network, betweenwhich theworker and
cheater populations are free to travel, and determine conditions
under which the two colonies can be maintained, and conditions
underwhich it collapses into a single colony. Section 4builds on the
results and intuition of the two-colony system to determine similar
conditions under which an N-colony, all-to-all connected network
collapses. Finally, we consider N-colony networks connected ac-
cording to more complicated graph structures, and discuss the
implications of our results.

2. Model construction

In this section, we develop a model of within- and between-
colony dynamics of a parthenogenetically reproducing organism.
We generally consider a collection of N colonies, which we will
hereafter refer to as a colony network, or simply a network, in
which individual colonies are connected according to a given con-
nectivity structure.

Within colony i = 1 . . .N , the population is comprised of two
sub-populations: workers, whose density is denoted by ui, who
contribute to the public good at rate c , and cheaters, whose density
is denoted by vi, who do not contribute. We assume the popula-
tions ui and vi grow at rates proportional to the available public
good, have respective natural mortality ratesµu andµv , and suffer
fecundity loss due to crowding rate γi(ui + vi). For full generality,
we will initially assume that the public good is a dynamic variable,
denoted φi (Allen et al., 2013). The public good is produced only by
workers, though it is consumed by both populations at rate κ , and
naturally spoils at rate δ. With these assumptions, the population
model within colony i is

u̇i = ui
[
r̃uφi − c − γi(ui + vi) − µu

]
v̇i = vi

[
r̃vφi − γi(ui + vi) − µv

]
φ̇i = cui −

[
κ(ui + vi) + δ̃

]
φi.

(1)

The crowding term allows for an interior coexistence equilib-
rium within each colony, at which each population’s size will
be inversely proportional to γi. The parameter γi can therefore
be interpreted as the quality of the ith colony, with smaller γi
corresponding to a colony of higher quality.

Previous ecological public goods models assume that the
growth of each population is proportional to the average available
public good (Hauert et al., 2008;Wakano et al., 2009). If we assume
that the dynamics of the public good are much faster than those of
the two subpopulations in system (1), i.e.,

u̇i = ui
[
r̃uφi − c − γi(ui + vi) − µu

]
v̇i = vi

[
r̃vφi − γi(ui + vi) − µv

]
ϵφ̇i = cui −

[
κ(ui + vi) + δ̃

]
φi

for 0 < ϵ ≪ 1, then the public good φi remains close to its steady
state value (Keener, 1988). In particular, for ϵ → 0, φi is constantly
at steady state

φi =
cui

κ(ui + vi) + δ̃
,

which is the average available public good. Replacing φi in system
(1) with the above steady state, we have

u̇i = ui

[
rucui

ui + vi + δ
− c − γi(ui + vi) − µu

]
v̇i = vi

[
rvcui

ui + vi + δ
− γi(ui + vi) − µv

]
,

(2)

where ru = r̃u/κ , rv = r̃v/κ , and δ = δ̃/κ . We will assume that
the dynamics of φi are sufficiently fast relative to those of the two
subpopulations that this approximation is valid. Moreover, system
(2) is similar to the systems studied in Hauert et al. (2008) and
Wakano et al. (2009), in that the growth rate of both populations
is proportional to the average available public good. We therefore
adopt system (2) as ourmodel ofwithin-colony population dynam-
ics, and finally we define

Fi(ui, vi) =
rucui

ui + vi + δ
− c − γi(ui + vi) − µu

Gi(ui, vi) =
rvcui

ui + vi + δ
− γi(ui + vi) − µv

as subpopulation ui and vi’s respective per-capita growth rates,
which we refer to as their fitnesses.

We now turn our attention to between-colony migration. In
their most general form, migratory dynamics can be included in
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