
Thread scheduling using ant colony optimization: An intelligent
scheduling approach towards minimal information leakage

Kushal Anjaria*, Arun Mishra

Department of Computer Science & Engineering, DIAT, Pune, India

Received 21 February 2017; revised 17 June 2017; accepted 10 August 2017

Abstract

In multithreaded programs, scheduler controls the execution of threads. As a result, the scheduler may arrange the execution
sequence of threads in such a way that multithreaded programs may violate the non-interference confidentiality policy. Due to a
violation of non-interference, multithreaded programs may leak security sensitive information. In the proposed work, Ant Colony
Optimization (ACO) based intelligent scheduling policy has been proposed in the form of algorithms to schedule threads in
multithreading environment in such a way that the execution sequence leads to minimal information leakage. In the present work,
the proposed scheduler also deals with conflicting scheduling parameters and provides the algorithmic solution which can handle all
conflicting entities of scheduling like throughput, delay, security-privacy and fairness. In this work, dynamic creation and deletion
of threads are also handled during the scheduling. Although the focus of this work is on the scheduling of threads, the proposed
policy can be used as a general purpose scheduling policy in many computing fields.
© 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of University of Kerbala. This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Multithreading; Ant colony optimization; Swarm computing; Scheduling; Intelligent computing

1. Introduction

In simple terminology, Multithreading is the ability
of the processor with a single core or multiple cores to
execute more than one thread using the scheduler in
such a way that it appears to the user that threads are
being executed concurrently. As a result, in multi-
threading, scheduler is the major factor as it can affect
information flow of the multithreaded program [1].

In general, commonly used schedulers are First
Come First Serve (FCFS), Round Robin (RR), Time
Division Multiple Access (TDMA), Priority schedulers
and Shortest Job First (SJF) schedulers. The multi-
threading and the concurrency are ubiquitous in mod-
ern computer programming. In multithreading also, the
aforementioned schedulers are used. The details of
these schedulers are incorporated in Table 1:

In multithreaded programs, the scheduler will con-
trol the execution of threads. In other words, the
scheduler will be shared by the threads of multi-
threaded programs. As suggested by Kadloor et al. in
[2], shared resources among the entities always lead to
information leakage. The shared scheduler in the

* Corresponding author.

E-mail address: kushal.anjaria@gmail.com (K. Anjaria).

Peer review under responsibility of University of Kerbala.

http://dx.doi.org/10.1016/j.kijoms.2017.08.003

2405-609X/© 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of University of Kerbala. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Available online at www.sciencedirect.com

ScienceDirect

Karbala International Journal of Modern Science xx (2017) 1e18
http://www.journals.elsevier.com/karbala-international-journal-of-modern-science/

+ MODEL

Please cite this article in press as: K. Anjaria, A. Mishra, Thread scheduling using ant colony optimization: An intelligent scheduling approach

towards minimal information leakage, Karbala International Journal of Modern Science (2017), http://dx.doi.org/10.1016/j.kijoms.2017.08.003

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:kushal.anjaria@gmail.com
http://dx.doi.org/10.1016/j.kijoms.2017.08.003
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.sciencedirect.com/science/journal/2405609X
http://dx.doi.org/10.1016/j.kijoms.2017.08.003
http://dx.doi.org/10.1016/j.kijoms.2017.08.003
http://www.journals.elsevier.com/karbala-international-journal-of-modern-science/


multithreaded environment also leads to information
leakage. An example of shared scheduler leaking in-
formation was provided by Russo and Sabelfeld, in [1].
Consider the example:

Th1: high: ¼ 0; low: ¼ high.
Th2: high: ¼ secret_content.
In the example, two threads Th1 and Th2 are being

executed. This multithreaded program is divided into
two portions i.e. low-security sensitive content and
high-security sensitive content. In the program, the
variable ‘low’ is low-security sensitive variable and the
variables ‘high’ and ‘secret_content’ are high-security
sensitive variables. Both the portions are interfering
with each other. If both the threads are executed in
isolation, then the program is secure, but if both the
threads are being executed under the effect of sched-
uler then they may leak information. In isolation, the
outcome of thread execution will not change i.e. output
of thread Th1 will always 0. Thus, the attacker of the
program will not gain anything. But if the same pro-
gram is executed under the effect of the scheduler then
it is possible that the thread Th1 may be executed first
by the scheduler. So the statement high: ¼ 0 will be
executed first. After that, the thread switch may occur
and the thread Th2 may be executed. After that again
the thread switch may occur and statement low: ¼ high
may be executed. If the statement low: ¼ high is
executed last then the program may leak the secret
content. Thus, the problem of information flow in the
multithreaded program, affected by the shared sched-
uler still remains an open research challenge [3]. The
present work tries to address this challenge.

The characteristics required by the schedulers in
multithreaded programs for information flow security
are:

� Permissiveness: Presence of scheduler in the
multithreaded program enables new attacks which
are not possible in the sequential environment. In

presence of shared scheduler information leakage
through the covert channel and side channel at-
tacks is also possible. Consider the example pro-
vided by Kadloor et al. in [1]. The example was
general and not exactly related to multithreading.
“Alice and Bob are executing their jobs on the
shared resource. Bob is facing the delay in
executing his task. That means he can assume that
Alice is executing her task on the shared resource.
Bob can know the job execution time of Alice and
based on this execution time, he can craft the
attack on Alice's job”. This example leads to the
timing covert channel and traffic analysis. The at-
tacks that can be crafted based on the traffic
analysis are information from the keystroke [4],
knowledge on the visited website [5] and words on
VoIP [6]. These attacks can also be crafted to gain
the secret content from a multithreaded program.
Thus, the scheduler should permit thread execution
in such a way that information leakage can be
mitigated or minimized.

� Scheduler independence: The scheduler inde-
pendence property means the security of multi-
threaded program execution should be made
independent of the scheduler. In other words, it can
be said that this characteristic conveys to separate
scheduling policy and security policy from each
other.

� Practical enforcement: The design of the sched-
uling policy should not be complex. Because of the
complex scheduling policy, the delay in job pro-
cessing will be higher and it can become imprac-
tical to use.

Besides, the aforementioned scheduler characteris-
tics, a scheduler or a scheduling policy is chosen based
on different performance matrix parameters such as
throughput, average delay, fairness, security, and pri-
vacy. The scheduler performance matrix parameters
are described in the Table 2:

The study of scheduler characteristics and perfor-
mance matrix parameters shows that they are con-
flicting with each other. The shared scheduler that
leads to the better throughput will lead to more privacy
breaches and information leakage. For example, as
suggested by Kadloor et al., in [1], the FCFS and
TDMA are two extreme scheduling policies. The FCFS
maintains least information privacy while the TDMA
maintains the highest privacy. But on the other hand,
performance or throughput of FCFS is very high
compared to TDMA policy. Thus, the system designer
should calculate the trade-offs and then select the

Table 1

The details of commonly used scheduler in multithreading.

Name Characteristics

1 FCFS This scheduler serves jobs in the order in which

it receives the job.

2 RR One job is served in succession from each

queued up sources.

3 TDMA Each source is assigned a predefined time in

which the scheduler serve the job assigned from

the particular source.

4 SJF The jobs are selected by the scheduler based on

the processing time. The job with shortest

processing time is served first by this scheduler.

2 K. Anjaria, A. Mishra / Karbala International Journal of Modern Science xx (2017) 1e18

+ MODEL

Please cite this article in press as: K. Anjaria, A. Mishra, Thread scheduling using ant colony optimization: An intelligent scheduling approach

towards minimal information leakage, Karbala International Journal of Modern Science (2017), http://dx.doi.org/10.1016/j.kijoms.2017.08.003



https://isiarticles.com/article/93001

