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a b s t r a c t

This paper addresses the container loading problem with multiple constraints that occur at many man-
ufacturing sites, such as furniture factories, appliances factories, and kitchenware factories. These facto-
ries receive daily orders with expiration dates, and each order consists of one or more items. On a
particular day, certain orders expire, and the expiring orders must be handled (shipped) prior to the
non-expiring ones. All of the items in an order must be placed in one container, and the volume of the
container should be maximally utilized. A heuristic algorithm is proposed to standardize the packing
of (order) items into a container. The algorithm chooses the expiring orders first before handling the
non-expiring orders. In both steps, the algorithm first selects a collection of orders by considering a sim-
ulated annealing strategy and subsequently packs the collection of orders into the container via a tree-
graph search procedure. The validity of the algorithm is examined through experimental results using
BR instances.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Many factories, such as furniture factories, appliance factories,
and kitchenware factories, are confronted with the problem of
packing item orders. Every day, these factories receive orders from
buyers worldwide and ship the items to the buyers in containers.
The factories want to load as many items as possible into a con-
tainer to reduce shipping costs. Each order consists of one or more
different items. On any given day, certain orders expire; the expir-
ing orders must be packed and shipped prior to the non-expiring
ones. If one item of an order is packed in the container, all items
of the order must be packed in the same container. If one item of
an order is not packed in the container, all items of the order must
not be packed in the container. To protect the items, each item
must be loaded with its height parallel to the height of the con-
tainer. The bottom of each item must be supported by the con-
tainer floor or by the top of a single item to simplify the
unloading process and to ensure the stability of the items.

According to the typology proposed by Dyckhoff (1990), this
issue is a 3/B/O problem. According to the recent typology pro-
posed by Wäscher, Haußner, and Schumann (2007), this issue is
a three-dimensional single knapsack problem (3D-SKP) or a
three-dimensional single large object placement problem (3D-
SLOPP). Following the review of the paper by Bortfeldt and
Wäscher (2013), 3D-SKP in this paper is a three-dimensional,
container-loading problem (3D-CLP) with the orientation con-
straint (C1), the stability constraint (C2), the guillotine-cutting
constraint (C3), the complete-shipment constraint (C4), and the
loading priority constraint (C5).

The rest of the paper is organized as follows: In Section 2, we
provide a literature review of three-dimensional container-
loading problems. In Section 3, we review the methods that solve
the container loading problem of item orders. In Section 4, we anal-
yse the results of the presented method based on simulations cre-
ated from BR instances (Bischoff & Ratcliff, 1995; Davies & Bischoff,
1999). Finally, in Section 5, we present the paper’s conclusions per-
spectives for future research.

2. Literature review

Since the seminal work by George and Robinson (1980), 3D-CLP
has received increasing attention from academic researchers and
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industry professionals. Bischoff and Ratcliff (1995) provide an
excellent overview of the practical requirements that may be
imposed on this problem. Bortfeldt and Wäscher (2013) provide
a comprehensive scheme to categorize the constraints of loading
a container and determine that the existing approaches have lim-
ited practical value because they do not sufficiently address the
constraints encountered in practice. In this paper, we discuss 3D-
CLP with several practical constraints (described in the Introduc-
tion section). To the best of our knowledge, there are no published
approaches that address 3D-CLP using the practical constraints we
investigate. We will briefly classify and discuss several of the
recent advances in this problem.

3D-CLP is considered an NP-hard (Bischoff & Marriott, 1990)
problem. Exact algorithms are usually constrained by a situation
called the combinatorial space explosion when the number of item
types increases. Consequently, notably few exact algorithms exist.

Martello et al. (2000); also see Den Boef et al., 2005) present a
branch-and-bound algorithm that addresses the single knapsack
problem and—based on this algorithm—a branch-and-bound
method for addressing the single bin-size, bin-packing problem.
The orientation of all of the items are fixed, and no further con-
straints are considered.

Hifi (2004) introduces an exact depth-first search and a
dynamic programming algorithm for solving the 3D SLOPP in a cut-
ting context. The orientation and the guillotine cutting constraint
are both considered. The number of items per type is unlimited.

Fekete, Schepers, and Van der Veen (2007) develop an exact
algorithm for higher-dimensional orthogonal packing problems,
where the small items have no fixed orientations, and no other
constraints are considered.

Heuristic methods prove to be a more realistic alternative for
addressing 3D-CLP. Although heuristic methods may only find sub-
optimal solutions, they can produce sufficiently good solutions in a
reasonable timeframe.

Orientation and stability constraints are the most studied con-
straints in the literature. In 3D-CLP, small items may have at most
six orthogonal orientations in the container. Pisinger (2002) and
Egeblad and Pisinger (2009) assume that the small items may be
rotated in any orthogonal direction. Most heuristic methods (e.g.,
Bischoff, Janetz, & Ratcliff, 1995; Bortfeldt & Gehring, 2001;
Fanslau & Bortfeldt, 2010; Gehring & Bortfeldt, 2002; He &
Huang, 2010, 2011; Huang & He, 2009; Lim, Ma, Xu, & Zhang,
2012; Lim, Rodrigues, & Wang, 2003; Moura & Oliveira, 2005;
Parreño, Alvarez-Valdés, Tamarit, & Oliveira, 2008; Zhu, Huang, &
Lim, 2012; Zhu & Lim, 2012) assume that some orientations are
forbidden.

Load stability is often considered the most important issue after
container space utilization in the literature (e.g., Bischoff & Ratcliff,
1995; Bortfeldt, Gehring, & Mack, 2003; Eley, 2002; Fanslau &
Bortfeldt, 2010; Gehring & Bortfeldt, 2002; Liu, Tan, Xu, & Liu,
2014; Ren, Tian, & Sawaragi, 2011; Zhang, Peng, & Leung, 2012;
Zhu & Lim, 2012; Zhu et al., 2012). Fanslau and Bortfeldt (2010)
and Zhu et al. (2012) consider two situations where small items
are fully or partially supported. Partial support is required by
Gehring and Bortfeldt (1997) and Mack, Bortfeldt, and Gehring
(2004).

The guillotine cutting constraint is often viewed from a loading
perspective. A guillotine pattern represents a type of loading pat-
tern that can be packed easily. A loading pattern is said to be guil-
lotineable if it can be obtained by a series of ‘‘cuts” parallel to the
container faces (especially the vertical faces). The guillotine cutting
constraint is considered in Hifi (2002), Morabito and Arenalest
(1994), and Liu et al. (2014). The loading pattern obtained by
Pisinger (2002) is guillotineable although it is not declared as such.

In practice, the available container space is not sufficiently
large to accommodate all small items, and the loading of some

items may be more desirable than the loading of others. Thus,
shipment priorities (Bortfeldt & Wäscher, 2013, also called load-
ing priorities by Bischoff & Ratcliff, 1995) exist for some items.
The shipment priority constraint is considered by Bortfeldt and
Gehring (1999), Ren et al. (2011), and Wang, Lim, and Zhu
(2013).

Certain subsets of loaded items may include functional or
administrative supplies (Bischoff & Ratcliff, 1995). If one item of
a subset is loaded, all other items of that subset must also be
loaded. If one item cannot be loaded, no item of the subset will
be loaded at all. Two cases can be distinguished: In the first case,
all items of a subset must be included in the shipment. In the sec-
ond case, all items of a subset have to be loaded into the same con-
tainer. Eley (2003) considers the first case in a multiple
heterogeneous large object placement problem.

A heuristic algorithm for container-loading of furniture, by
Egeblad, Garavelli, Lisi, and Pisinger (2010), is remarkable in that
a large variety of irregular items are considered and many practical
constraints are satisfied. However, the loading priority constraint
and the complete-shipment constraint are not considered. Lim,
Ma, Qiu, and Zhu (2013) consider the axle-weight constraint when
solving the single container loading problem. Chen, Lee, and Shen
(1995) provide an analytical model for the container loading prob-
lem. Junqueira, Morabito, and Sato Yamashita (2012) propose MIP-
based approaches for the container loading problem with multi-
drop constraints. Liu, Zhao, Dong, and Cheng (2016) present a
heuristic algorithm for container loading of pallets with infill
boxes.

The great majority of the methods mentioned above obey the
orientation constraint and the stability constraint. Some methods
also include additional constraints, e.g., such as the guillotine con-
straint, the loading priority constraint and the complete-shipment
constraint. However, no approaches simultaneously consider all of
the five constraints. Thus, we will develop a new algorithm that
can handle the container loading problem with all of the five
constraints.

3. Method for the container loading problem of item orders

3.1. Problem definition

The 3D-CLP in this paper is called the container-loading prob-
lem with multiple constraints CLPMC. CLPMC is defined as follows.

A factory has m unfinished orders that are set to expire and n
unfinished orders that do not expire. The total number of items
in the m + n orders is k. The k items are characterized by lengths
ðl1; l2; . . . ; lkÞ, widths ðw1;w2; . . . ;wkÞ, and heights ðh1; h2; . . . ;hkÞ.
The container C is characterized by the length L, the width W and
the height H. The objective is to load a subset of these m + n orders
with maximum item volume into C. Additionally, the five con-
straints (C1-C5) must be fulfilled.

We define:

oij ¼
1; if the jth item is in the ith expiring order;
0; otherwise:

�
ði ¼ 1;2; . . . ;m; j ¼ 1;2; . . . ; kÞ; ð1Þ

rij ¼
1; if the jth item is in the ith unexpiring order;
0; otherwise:

�
ði ¼ 1;2; . . . ;n; j ¼ 1;2; . . . ; kÞ; ð2Þ

ai ¼
1; if the items of the ith expiring order is packed in the container;
0; otherwise:

�
ði ¼ 1;2; . . . ;mÞ; ð3Þ
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