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a b s t r a c t 

Empty or limited storage capacities between machines introduce various types of blocking constraint in 

the industries with flowshop environment. While large applications demand flowshop scheduling with a 

mix of different types of blocking, research in this area mainly focuses on using only one kind of block- 

ing in a given problem instance. In this paper, using makespan as a criterion, we study permutation 

flowshops with zero capacity buffers operating under mixed blocking conditions. We present a very ef- 

fective scatter search (SS) algorithm for this. At the initialisation phase of SS, we use a modified version 

of the well-known Nawaz, Enscore and Ham (NEH) heuristic. For the improvement method in SS, we use 

an Iterated Local Search (ILS) algorithm that adopts a greedy job selection and a powerful NEH-based 

perturbation procedure. Moreover, in the reference set update phase of SS, with small probabilities, we 

accept worse solutions so as to increase the search diversity. On standard benchmark problems of varying 

sizes, our algorithm very significantly outperforms well-known existing algorithms in terms of both the 

solution quality and the computing time. Moreover, our algorithm has found new upper bounds for 314 

out of 360 benchmark problem instances. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Permutation flowshop scheduling has been a very active re- 

search area after the seminal work by Johnson (1954) . It has its 

significance both in theory and industry ( Pan et al., 2011; Riahi & 

Kazemi, 2016; Safari & Sadjadi, 2011; Shao & Pi, 2016 ). Permuta- 

tion flowshops involve processing a number of jobs by a number 

of machines. The machines are in a fixed order with buffers of dif- 

ferent sizes between successive machines. Each job needs process- 

ing at each machine and in the order of the machines. However, 

once an ordering of the jobs is determined, jobs are processed in 

the same order on all machines. The permutation flowshop problem 

is to find a permutation of the jobs such that a given objective (e.g. 

the makespan) is minimised. 

Permutation flowshops could run with buffers having unlim- 

ited capacities. However, the buffer capacities in the real-world in- 

dustries are limited or even zero. Flowshop scheduling problems 

with zero capacity buffers are called blocking flowshop scheduling 

problems (BFSP) ( Lovner, 1969 ). In the literature, different types of 

blocking are introduced and the most traditional and common one 

is Release when Starting Blocking (RSb). In the RSb, a completed 

∗ Corresponding author. 

E-mail addresses: vahid.riahi@griffithuni.edu.au (V. Riahi), 

m.khorrami@sutech.ac.ir (M. Khorramizadeh), mahakim.newton@griffith.edu.au 

(M.A. Hakim Newton), a.sattar@griffith.edu.au (A. Sattar). 

job has to stay (blocked) in the current machine until the next ma- 

chine is available for processing ( Ribas et al., 2015 ). This type of 

blocking can be observed in chemical industry as an example. In 

this industry, partially completed jobs sometimes stay in the ma- 

chines due to lack of intermediate buffers. Several types of algo- 

rithm have been proposed to solve the BFSP. These include genetic 

algorithms ( Caraffa et al., 2001 ), tabu search ( Grabowski & Pem- 

pera, 2007 ), hybrid discrete differential evolution ( )Wang, Pan, Sug- 

anthan et al., 2010 ), harmony search algorithms ( Wang, Pan, & Tas- 

getiren, 2011 ), iterated greedy algorithms ( Ribas et al., 2011 ), artifi- 

cial immune system algorithms ( Lin & Ying, 2013 ), and bee colony 

algorithms ( Ribas et al., 2015 ). 

Inspired by real-world industries, another model of blocking 

flowshop, named Release when Completing blocking (RCb), was in- 

troduced by Dauzère-Pérès et al. (20 0 0) . In RCb, a machine can 

start the next available job if the previous job not only does fin- 

ish, but also leaves the next machine. RCb is seen in real-life in- 

dustries such as waste treatment and aeronautics parts fabrica- 

tion industries ( Martinez de La Piedra, 2005 ). For more details, 

consider waste treatment industries as an example. There are two 

main steps named tanks and blender. Different types of waste (in- 

dustrial and farm) when received are transferred and unloaded 

into tanks by trucks. Then, each cargo is treated by only one 

blender. In this industry, when wastes flow from the tank to the 

blender, the tank is not available until the product is finished com- 

pletely in the blender (RCb constraint). To deal with RCb, an integer 
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linear programming (ILP) model along with a meta-heuristic al- 

gorithm was proposed by Martinez de La Piedra (2005) and also 

an electromagnetism-like (EM) algorithm was used by Yuan and 

Sauer (2007) . Later, a hybridisation of the EM algorithm and a 

mixed-integer linear programming model appeared in Yuan et al. 

(2009) . Lately, a new blocking constraint, Release when Completing 

Blocking ∗ (RCb ∗), has been proposed in Trabelsi et al. (2010) . RCb ∗

is a special type of RCb where a machine cannot start processing 

an available job until the next machine finishes the previous job 

regardless of whether the previous job leaves the machine or not. 

RCb ∗ is seen at production factories where two consecutive ma- 

chines use the same resource (tools or operators) ( Trabelsi et al., 

2010 ). 

Despite the work mentioned above on various types of block- 

ing, research on using a number of different types of blocking in 

a mixed setting–hence called a mixed blocking permutation flow- 

shop scheduling problem (MBPFSP)–is rare. This is the case even 

though large-scale production industries, due to technical limita- 

tion or scarcity of intermediate buffer space, often face different 

types of blocking simultaneously. We will later show an example 

of mixed blocking situation in detail in Section 2.4 on cider pro- 

duction process. Nevertheless, mixing of RSb and RCb are studied 

in Martinez et al. (2006) . Later, mixing of RSb, RCb and RCb ∗ are 

studied in Trabelsi et al. (2012) using genetic algorithms and then 

in Khorramizadeh and Riahi (2015) using Taguchi arrays and lo- 

cal search within a bee colony optimisation algorithm. Overall, the 

aforementioned population-based algorithms used for MBPFSP suf- 

fer from the lack of diversity in the exploration. As a result, the 

individual solutions in the population soon become very close to 

each other; which needs to be dealt with more carefully. 

In this paper, we present a very effective scatter search algo- 

rithm for the MBPFSP. In our MBPFSP, we use different types of 

blocking that include RSb, RCb and RCb ∗, and we consider minimis- 

ing makespan as an objective criterion. Scatter search algorithms 

( Glover, 1977 ) keep a reference set of solutions and combine them 

intelligently with each other to incorporate both quality and diver- 

sity, and finally to reach better solutions. Scatter search has been 

successfully applied in many scheduling problems. At the initiali- 

sation phase of our scatter search algorithm for MBPFSP, we use 

a modified version of the well-known Nawaz, Enscore and Ham 

(NEH) heuristic ( Nawaz et al., 1983 ). We also use an iterated local 

search along with an NEH-based perturbation. In the local search, 

jobs are selected greedily based on two differential blocking times 

created by RCb and RCb ∗ constraints. Moreover, we accept worse 

solutions with small probabilities to increase diversity of the ex- 

ploration in the reference set updating step. The experimental and 

statistical results on standard benchmark problems show that the 

presented heuristic algorithm is better than the best-performing 

existing heuristic algorithms. Finally, our SS algorithm significantly 

outperforms the state-of-the-art MBPFSB algorithms on both solu- 

tion quality and computing time. Moreover, we have obtained new 

upper bounds for 314 out of 360 standard benchmark instances of 

the MBPFSP. 

The rest of the paper is organised as follows: Section 2 intro- 

duces the mixed blocking permutation flowshop scheduling prob- 

lem; Section 3 details our scatter search algorithm for MBPFSP; 

Sections 4 and 5 provide our experimental results on different 

benchmark problems; Section 6 discusses the best solutions found 

by our algorithm; and finally, Section 7 presents our conclusions. 

2. Mixed blocking permutation flowshop scheduling 

In a permutation flowshop scheduling problem (shown in 

Fig. 1 ), there are m machines and n jobs. The machines are in a 

given fixed order. Without loss of generality, assume the machines 

are in the order 1 , 2 , . . . , m . There is a buffer i of a given capacity 

between each two successive machines i and i + 1 . Each job 1 ≤
j ≤ n needs processing at each machine. A machine i + 1 can pro- 

cess a job j only after machine i has processed it. Once an ordering 

of the jobs is determined, jobs are processed in the same order on 

all machines. We are to find a permutation of the jobs such that 

all jobs one by one in the permutation order will pass through all 

machines and the objective (e.g. the makespan) will be minimised. 

Assume a given ordering of the jobs where [ k ] denotes the job 

at position k ∈ [1, n ]. We use S i , [ k ] , C i , [ k ] and L i , [ k ] to denote the 

starting time, completion time, and leave time of job [ k ] at ma- 

chine i . Machine i starts processing a job [ k ] as soon as it arrives to 

the machine, and spends P i , [ k ] time to process the job. When the 

job [ k ] is completed at machine i at C i , [ k ] time, it might be blocked 

for a while depending on the blocking constraint and would leave 

the machine i at time L i , [ k ] , which is also its arrival and starting 

time S i +1 , [ k ] at machine i + 1 (for i < m ). From these, we clearly get 

three relations S i, [ k ] + P i, [ k ] = C i, [ k ] , C i , [ k ] ≤ L i , [ k ] , and L i, [ k ] = S i +1 , [ k ] 

where i < m . Then, combining the three relations, we obtain an- 

other relation S i +1 , [ k ] > S i, [ k ] , for i < m . Moreover, we have the rela- 

tion S i, [ k ] ≥ C i, [ k −1] > S i, [ k −1] for k > 1, since machine i always starts 

processing job [ k ] after processing job [ k − 1] . 

2.1. Mixed blocking 

In this paper, we study the mixed blocking flowshop scheduling, 

where the buffer capacities are either zero (blocking) or unlimited 

(no-blocking). Three different types of blocking are found in the 

literature. These blocking types and also the no-blocking type are 

formally described below. 

1. Wb ( Without Blocking ): a machine i can immediately start pro- 

cessing an available job [ k ] after finishing job [ k − 1] . 

2. RSb ( Release when Starting Blocking ): a machine i < m cannot 

start processing an available job [ k ] until machine i + 1 starts 

processing job [ k − 1] . 

S i, [ k ] ≥ S i +1 , [ k −1] 

3. RCb ∗ ( Release when Completing Blocking ∗): a machine i < m can- 

not start processing an available job [ k ] until machine i + 1 fin- 

ishes job [ k − 1] . 

S i, [ k ] ≥ C i +1 , [ k −1] 

4. RCb ( Release when Completing Blocking ): a machine i < m cannot 

start an available job [ k ] until job [ k − 1] leaves machine i + 1 . 

S i, [ k ] ≥ L i +1 , [ k −1] 

One important issue with the MBPFSP is the order of the block- 

ing types to be applied on successive machines. In Trabelsi et al. 

(2012) , a repeated sequence of ( RCb, RSb, RCb ∗, Wb ) is used for or- 

dering the blocking types of successive machines. This order is also 

used exactly by Khorramizadeh and Riahi (2015) . However, there 

is an important drawback of this blocking sequence and standard 

benchmark MBPFSP problems should take the drawback into ac- 

count. The RSb constraint applied to a machine that is immedi- 

ately after another machine running under the RCb constraint can- 

not make any difference in the makespan. The following lemma 

proves this. 

Lemma 1. Applying RSb to machine i + 1 does not create any block- 

ing and has no impact on the makespan, if RCb is applied at machine 

i. 

Proof. When RCb is applied at machine i , we have S i, [ k ] ≥ L i +1 , [ k −1] . 

Since L i +1 , [ k −1] = S i +2 , [ k −1] , we can write S i, [ k ] ≥ S i +2 , [ k −1] . We also 

have S i +1 , [ k ] > S i, [ k ] . So combining these relations, we obtain 

S i +1 , [ k ] > S i +2 , [ k −1] , which always satisfies the condition S i +1 , [ k ] ≥
S i +2 , [ k −1] for RSb at machine i + 1 . �
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