
Expert Systems With Applications 79 (2017) 20–32

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

Scatter search for mixed blocking flowshop scheduling

Vahid Riahi a , ∗, Mostafa Khorramizadeh b , M.A. Hakim Newton

a , Abdul Sattar a

a Institute for Integrated and Intelligent Systems (IIIS), Griffith University, 170 Kessels Rd, Nathan QLD 4111, Australia
b Department of Mathematical Sciences, Shiraz University of Technology, Shiraz, Iran

a r t i c l e i n f o

Article history:

Received 28 September 2016

Revised 15 February 2017

Accepted 16 February 2017

Available online 20 February 2017

Keywords:

Flowshop scheduling

Mixed blocking constraints

Heuristic algorithms

Meta-heuristic algorithms

Scatter search

a b s t r a c t

Empty or limited storage capacities between machines introduce various types of blocking constraint in

the industries with flowshop environment. While large applications demand flowshop scheduling with a

mix of different types of blocking, research in this area mainly focuses on using only one kind of block-

ing in a given problem instance. In this paper, using makespan as a criterion, we study permutation

flowshops with zero capacity buffers operating under mixed blocking conditions. We present a very ef-

fective scatter search (SS) algorithm for this. At the initialisation phase of SS, we use a modified version

of the well-known Nawaz, Enscore and Ham (NEH) heuristic. For the improvement method in SS, we use

an Iterated Local Search (ILS) algorithm that adopts a greedy job selection and a powerful NEH-based

perturbation procedure. Moreover, in the reference set update phase of SS, with small probabilities, we

accept worse solutions so as to increase the search diversity. On standard benchmark problems of varying

sizes, our algorithm very significantly outperforms well-known existing algorithms in terms of both the

solution quality and the computing time. Moreover, our algorithm has found new upper bounds for 314

out of 360 benchmark problem instances.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Permutation flowshop scheduling has been a very active re-

search area after the seminal work by Johnson (1954) . It has its

significance both in theory and industry (Pan et al., 2011; Riahi &

Kazemi, 2016; Safari & Sadjadi, 2011; Shao & Pi, 2016). Permuta-

tion flowshops involve processing a number of jobs by a number

of machines. The machines are in a fixed order with buffers of dif-

ferent sizes between successive machines. Each job needs process-

ing at each machine and in the order of the machines. However,

once an ordering of the jobs is determined, jobs are processed in

the same order on all machines. The permutation flowshop problem

is to find a permutation of the jobs such that a given objective (e.g.

the makespan) is minimised.

Permutation flowshops could run with buffers having unlim-

ited capacities. However, the buffer capacities in the real-world in-

dustries are limited or even zero. Flowshop scheduling problems

with zero capacity buffers are called blocking flowshop scheduling

problems (BFSP) (Lovner, 1969). In the literature, different types of

blocking are introduced and the most traditional and common one

is Release when Starting Blocking (RSb). In the RSb, a completed

∗ Corresponding author.

E-mail addresses: vahid.riahi@griffithuni.edu.au (V. Riahi),

m.khorrami@sutech.ac.ir (M. Khorramizadeh), mahakim.newton@griffith.edu.au

(M.A. Hakim Newton), a.sattar@griffith.edu.au (A. Sattar).

job has to stay (blocked) in the current machine until the next ma-

chine is available for processing (Ribas et al., 2015). This type of

blocking can be observed in chemical industry as an example. In

this industry, partially completed jobs sometimes stay in the ma-

chines due to lack of intermediate buffers. Several types of algo-

rithm have been proposed to solve the BFSP. These include genetic

algorithms (Caraffa et al., 2001), tabu search (Grabowski & Pem-

pera, 2007), hybrid discrete differential evolution ()Wang, Pan, Sug-

anthan et al., 2010), harmony search algorithms (Wang, Pan, & Tas-

getiren, 2011), iterated greedy algorithms (Ribas et al., 2011), artifi-

cial immune system algorithms (Lin & Ying, 2013), and bee colony

algorithms (Ribas et al., 2015).

Inspired by real-world industries, another model of blocking

flowshop, named Release when Completing blocking (RCb), was in-

troduced by Dauzère-Pérès et al. (20 0 0) . In RCb, a machine can

start the next available job if the previous job not only does fin-

ish, but also leaves the next machine. RCb is seen in real-life in-

dustries such as waste treatment and aeronautics parts fabrica-

tion industries (Martinez de La Piedra, 2005). For more details,

consider waste treatment industries as an example. There are two

main steps named tanks and blender. Different types of waste (in-

dustrial and farm) when received are transferred and unloaded

into tanks by trucks. Then, each cargo is treated by only one

blender. In this industry, when wastes flow from the tank to the

blender, the tank is not available until the product is finished com-

pletely in the blender (RCb constraint). To deal with RCb, an integer

http://dx.doi.org/10.1016/j.eswa.2017.02.027

0957-4174/© 2017 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.eswa.2017.02.027
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2017.02.027&domain=pdf
mailto:vahid.riahi@griffithuni.edu.au
mailto:m.khorrami@sutech.ac.ir
mailto:mahakim.newton@griffith.edu.au
mailto:a.sattar@griffith.edu.au
http://dx.doi.org/10.1016/j.eswa.2017.02.027

V. Riahi et al. / Expert Systems With Applications 79 (2017) 20–32 21

linear programming (ILP) model along with a meta-heuristic al-

gorithm was proposed by Martinez de La Piedra (2005) and also

an electromagnetism-like (EM) algorithm was used by Yuan and

Sauer (2007) . Later, a hybridisation of the EM algorithm and a

mixed-integer linear programming model appeared in Yuan et al.

(2009) . Lately, a new blocking constraint, Release when Completing

Blocking ∗ (RCb ∗), has been proposed in Trabelsi et al. (2010) . RCb ∗

is a special type of RCb where a machine cannot start processing

an available job until the next machine finishes the previous job

regardless of whether the previous job leaves the machine or not.

RCb ∗ is seen at production factories where two consecutive ma-

chines use the same resource (tools or operators) (Trabelsi et al.,

2010).

Despite the work mentioned above on various types of block-

ing, research on using a number of different types of blocking in

a mixed setting–hence called a mixed blocking permutation flow-

shop scheduling problem (MBPFSP)–is rare. This is the case even

though large-scale production industries, due to technical limita-

tion or scarcity of intermediate buffer space, often face different

types of blocking simultaneously. We will later show an example

of mixed blocking situation in detail in Section 2.4 on cider pro-

duction process. Nevertheless, mixing of RSb and RCb are studied

in Martinez et al. (2006) . Later, mixing of RSb, RCb and RCb ∗ are

studied in Trabelsi et al. (2012) using genetic algorithms and then

in Khorramizadeh and Riahi (2015) using Taguchi arrays and lo-

cal search within a bee colony optimisation algorithm. Overall, the

aforementioned population-based algorithms used for MBPFSP suf-

fer from the lack of diversity in the exploration. As a result, the

individual solutions in the population soon become very close to

each other; which needs to be dealt with more carefully.

In this paper, we present a very effective scatter search algo-

rithm for the MBPFSP. In our MBPFSP, we use different types of

blocking that include RSb, RCb and RCb ∗, and we consider minimis-

ing makespan as an objective criterion. Scatter search algorithms

(Glover, 1977) keep a reference set of solutions and combine them

intelligently with each other to incorporate both quality and diver-

sity, and finally to reach better solutions. Scatter search has been

successfully applied in many scheduling problems. At the initiali-

sation phase of our scatter search algorithm for MBPFSP, we use

a modified version of the well-known Nawaz, Enscore and Ham

(NEH) heuristic (Nawaz et al., 1983). We also use an iterated local

search along with an NEH-based perturbation. In the local search,

jobs are selected greedily based on two differential blocking times

created by RCb and RCb ∗ constraints. Moreover, we accept worse

solutions with small probabilities to increase diversity of the ex-

ploration in the reference set updating step. The experimental and

statistical results on standard benchmark problems show that the

presented heuristic algorithm is better than the best-performing

existing heuristic algorithms. Finally, our SS algorithm significantly

outperforms the state-of-the-art MBPFSB algorithms on both solu-

tion quality and computing time. Moreover, we have obtained new

upper bounds for 314 out of 360 standard benchmark instances of

the MBPFSP.

The rest of the paper is organised as follows: Section 2 intro-

duces the mixed blocking permutation flowshop scheduling prob-

lem; Section 3 details our scatter search algorithm for MBPFSP;

Sections 4 and 5 provide our experimental results on different

benchmark problems; Section 6 discusses the best solutions found

by our algorithm; and finally, Section 7 presents our conclusions.

2. Mixed blocking permutation flowshop scheduling

In a permutation flowshop scheduling problem (shown in

Fig. 1), there are m machines and n jobs. The machines are in a

given fixed order. Without loss of generality, assume the machines

are in the order 1 , 2 , . . . , m . There is a buffer i of a given capacity

between each two successive machines i and i + 1 . Each job 1 ≤
j ≤ n needs processing at each machine. A machine i + 1 can pro-

cess a job j only after machine i has processed it. Once an ordering

of the jobs is determined, jobs are processed in the same order on

all machines. We are to find a permutation of the jobs such that

all jobs one by one in the permutation order will pass through all

machines and the objective (e.g. the makespan) will be minimised.

Assume a given ordering of the jobs where [k] denotes the job

at position k ∈ [1, n]. We use S i , [k] , C i , [k] and L i , [k] to denote the

starting time, completion time, and leave time of job [k] at ma-

chine i . Machine i starts processing a job [k] as soon as it arrives to

the machine, and spends P i , [k] time to process the job. When the

job [k] is completed at machine i at C i , [k] time, it might be blocked

for a while depending on the blocking constraint and would leave

the machine i at time L i , [k] , which is also its arrival and starting

time S i +1 , [k] at machine i + 1 (for i < m). From these, we clearly get

three relations S i, [k] + P i, [k] = C i, [k] , C i , [k] ≤ L i , [k] , and L i, [k] = S i +1 , [k]

where i < m . Then, combining the three relations, we obtain an-

other relation S i +1 , [k] > S i, [k] , for i < m . Moreover, we have the rela-

tion S i, [k] ≥ C i, [k −1] > S i, [k −1] for k > 1, since machine i always starts

processing job [k] after processing job [k − 1] .

2.1. Mixed blocking

In this paper, we study the mixed blocking flowshop scheduling,

where the buffer capacities are either zero (blocking) or unlimited

(no-blocking). Three different types of blocking are found in the

literature. These blocking types and also the no-blocking type are

formally described below.

1. Wb (Without Blocking): a machine i can immediately start pro-

cessing an available job [k] after finishing job [k − 1] .

2. RSb (Release when Starting Blocking): a machine i < m cannot

start processing an available job [k] until machine i + 1 starts

processing job [k − 1] .

S i, [k] ≥ S i +1 , [k −1]

3. RCb ∗ (Release when Completing Blocking ∗): a machine i < m can-

not start processing an available job [k] until machine i + 1 fin-

ishes job [k − 1] .

S i, [k] ≥ C i +1 , [k −1]

4. RCb (Release when Completing Blocking): a machine i < m cannot

start an available job [k] until job [k − 1] leaves machine i + 1 .

S i, [k] ≥ L i +1 , [k −1]

One important issue with the MBPFSP is the order of the block-

ing types to be applied on successive machines. In Trabelsi et al.

(2012) , a repeated sequence of (RCb, RSb, RCb ∗, Wb) is used for or-

dering the blocking types of successive machines. This order is also

used exactly by Khorramizadeh and Riahi (2015) . However, there

is an important drawback of this blocking sequence and standard

benchmark MBPFSP problems should take the drawback into ac-

count. The RSb constraint applied to a machine that is immedi-

ately after another machine running under the RCb constraint can-

not make any difference in the makespan. The following lemma

proves this.

Lemma 1. Applying RSb to machine i + 1 does not create any block-

ing and has no impact on the makespan, if RCb is applied at machine

i.

Proof. When RCb is applied at machine i , we have S i, [k] ≥ L i +1 , [k −1] .

Since L i +1 , [k −1] = S i +2 , [k −1] , we can write S i, [k] ≥ S i +2 , [k −1] . We also

have S i +1 , [k] > S i, [k] . So combining these relations, we obtain

S i +1 , [k] > S i +2 , [k −1] , which always satisfies the condition S i +1 , [k] ≥
S i +2 , [k −1] for RSb at machine i + 1 . �

https://isiarticles.com/article/93145

