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a b s t r a c t 

The pricing of financial derivatives based on stochastic volatility models has been a popular subject in 

computational finance. Although exact or approximate closed form formulas of the prices of many op- 

tions under stochastic volatility have been obtained so that the option prices can be easily computed, 

such formulas for exchange options leave much to be desired. In this paper, we consider two different 

risky assets with two different scales of mean-reversion rate of volatility and use asymptotic analysis to 

extend the classical Margrabe formula, which corresponds to a geometric Brownian motion model, and 

obtain a pricing formula under a stochastic volatility. The resultant formula can be computed easily, sim- 

ply by taking derivatives of the Margrabe price itself. Based on the formula, we show how the stochastic 

volatility corrects the Margrabe price behavior depending on the moneyness and the correlation coeffi- 

cient between the two asset prices. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

There is a well known formula called the Margrabe formula 

[1] which is a closed form pricing formula for European options to 

exchange one risky asset for another at maturity. The prices of two 

underlying assets in this formula are assumed to follow geometric 

Brownian motions (GBMs). The volatilities of these assets may not 

be necessarily constant but the volatility of the ratio of the two 

assets has to be constant. Although it is a nice starting point to 

price an exchange option based on a GBM for the underlying asset, 

it is well-known to give rise to a controversy. For example, the flat 

implied volatility of the model would not capture the volatility 

smile or skew which is well observed in the market. Also, the un- 

derestimation of extreme movement in risky asset prices yielding 

tail risk is another drawback of the GBM assumption. 

In general, there have been lots of effort s to overcome the limit 

of the GBM process in quantitative finance. The constant elasticity 

of variance model developed by Cox [2] , a stochastic volatility 

model by Heston [3] or Fouque et al. [4] , and a Levy model by 

Carr et al. [5] are quite popular as they are taking center stage in 

the current mathematical finance community. And there are many 

interesting modified versions including the ones given by Bonanno 

et al. [6] and [7] . In terms of exchange option, however, studies 
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of the Margrabe formula based on these advanced models leave 

much to be desired. There are a few number of works reported 

so far regarding the exchange option. Bernard et al. [8] considered 

the Margrabe formula with stochastic interest rates, Antonelli et al. 

[9] studied exchange option pricing under stochastic volatility via 

a correlation expansion, and Alos et al. [10] extended the Margrabe 

formula under general stochastic volatility. 

This paper has chosen a stochastic volatility model with fast 

mean-reversion which was developed by Fouque et al. [4] in order 

to extend the Margrabe formula and investigate stochastic volatil- 

ity effect on the formula. While the study of Antonelli et al. [9] has 

assumed that the correlation parameters are small enough to make 

a possible Taylor series expansion and Alos et al. [10] has assumed 

that the volatility processes of two assets are driven by the same 

Brownian motion (perfect correlation), our study is based on the 

assumption that they are independent but they are both fast 

mean-reverting with two different speeds of the mean-reversion. 

Since the fast mean-reversion is a stylized fact for stochastic 

volatility, our specification is not believed to be restrictive. If the 

two Brownian motions driving the volatilities are assumed to be 

the same Brownian motion, then it would add an extra term to 

our result without harming the methodology. However, the focal 

point of this paper is the study of stochastic volatility effects 

driven by the multi-scale property of the mean-reversion. The 

biggest advantage of our formulation is that the corresponding 

formula is explicitly given by the Greeks of the classical Margrabe 

formula so that its computation can become much easier. 
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This paper is structured as follows. In Section 2 , we formulate 

a stochastic volatility model for an exchange option and obtain a 

singularly perturbed partial differential equation problem for the 

option price. In Section 3 , we use asymptotic expansion method 

to obtain an explicit formula for the solution of it. Section 4 dis- 

closes the stochastic volatility effect on the Margrabe formula. 

Section 5 concludes. 

2. Model formulation 

We consider two risky assets whose prices are denoted by S 1 t 

and S 2 t , respectively. Based on the fast mean-reverting stochastic 

volatility model of Fouque et al. [4] for a single asset, let S 1 t and 

S 2 t satisfy the stochastic differential equations 

dS 1 t = rS 1 t dt + f (Y 1 t ) S 
1 
t dW 

1 
t , 

dY 1 t = 

(
1 

ε
(m 1 − Y 1 t ) −

ν1 

√ 

2 √ 

ε
�1 (Y 1 t ) 

)
dt + 

ν1 

√ 

2 √ 

ε
dZ 1 t , (1) 

dS 2 t = rS 2 t dt + g(Y 2 t ) S 
2 
t dW 

2 
t , 

dY 2 t = 

(
1 

δ
(m 2 − Y 2 t ) −

ν2 

√ 

2 √ 

δ
�2 (Y 2 t ) 

)
dt + 

ν2 

√ 

2 √ 

δ
dZ 2 t , (2) 

respectively, where r is a risk-free interest rate, �1 and �2 are the 

market prices of volatility risk, ε and δ are sufficiently small pos- 

itive parameters corresponding to the short mean-reversion time 

scale of the volatility factor Y 1 t and Y 2 t , the functions f and g are 

volatility functions driven by the processes Y 1 t and Y 2 t , respectively, 

which are positive and smooth functions such that f 2 and g 2 are 

integrable with respect to the invariant distribution of Y 1 t and Y 2 t , 

respectively. And W 

1 
t , W 

2 
t , Z 

1 
t and Z 2 t are Brownian motions whose 

correlation structure is given by d W 

1 
t dZ 1 t = ρ11 d t, d W 

1 
t d W 

2 
t = ρ12 d t

and d W 

2 
t dZ 2 t = ρ22 d t and zero otherwise. We note that the process 

Y i t is an ergodic process having an invariant distribution, denoted 

by �i , which is normal with N ( m i , ν i ), i = 1 , 2 . 

The price at time t of an option to exchange asset 2 for asset 1 

is defined by 

P (t, s 1 , s 2 , y 1 , y 2 ; T ) = E[ e −r(T −t) max (S 1 T − S 2 T , 0) | S 1 t 

= s 1 , S 
2 
t = s 2 , Y 

1 
t = y 1 , Y 

2 
t = y 2 ] 

with a final condition given by P (T , s 1 , s 2 , y 1 , y 2 ; T ) = max (s 1 −
s 2 , 0) . Since the 4-dimensional joint process (S 1 t , S 

2 
t , Y 

1 
t , Y 

2 
t ) is a 

Markov process, the Feynman–Kac theorem (cf. Oksendal [11] ) 

leads to a partial differential equation problem given by (
1 

ε
L 0 + 

1 √ 

ε
L 1 + L ex + 

1 

δ
M 0 + 

1 √ 

δ
M 1 

)
P (t, s 1 , s 2 , y 1 , y 2 ; T ) = 0 , 

t < T , (3) 

P (T , s 1 , s 2 , y 1 , y 2 ; T ) = max (s 1 − s 2 , 0) , (4) 

where the operators L 0 , L 1 , L ex , M 0 , and M 1 are given by 

L 0 = (m 1 − y 1 ) 
∂ 

∂y 1 
+ ν2 

1 

∂ 2 

∂y 2 
1 

, 

L 1 = ρ11 f (y 1 ) ν1 s 1 
√ 

2 

∂ 2 

∂s 1 ∂y 1 
−

√ 

2 ν1 �
1 (y 1 ) 

∂ 

∂y 1 
, 

L ex = 

∂ 

∂t 
+ 

1 

2 

f (y 1 ) 
2 s 2 1 

∂ 2 

∂s 2 
1 

+ 

1 

2 

g(y 2 ) 
2 s 2 2 

∂ 2 

∂s 2 
2 

+ ρ12 f (y 1 ) g(y 2 ) s 1 s 2 
∂ 2 

∂ s 1 ∂ s 2 
+ r 

(
s 1 

∂ 

∂s 1 
+ s 2 

∂ 

∂s 2 
− ·

)
, 

M 0 = (m 2 − y 2 ) 
∂ 

∂y 2 
+ ν2 

2 

∂ 2 

∂y 2 
2 

, 

M 1 = ρ22 g(y 2 ) ν2 s 2 
√ 

2 

∂ 2 

∂s 2 ∂y 2 
−

√ 

2 ν2 �
2 (y 2 ) 

∂ 

∂y 2 
, (5) 

respectively. This is a singularly perturbed partial differential 

equation problem. It can not be solved for general functions f and 

g . So, we use asymptotic expansion method of Fouque et al. [4] to 

obtain an approximate solution of it. 

3. Multiscale asymptotic expansion 

3.1. Leading order term 

Under the assumption ε << δ << 

√ 

ε, we expand the option 

price P formally as 

P = P 0 , 0 + 

√ 

δP 0 , 1 + 

√ 

εP 1 , 0 + δP 0 , 2 + 

√ 

εδP 1 , 1 + εP 2 , 0 + δ
√ 

δP 0 , 3 

+ δ
√ 

εP 1 , 2 + ε
√ 

δP 2 , 1 + ε
√ 

εP 3 , 0 + · · · , 

where we assume that each term P i, j does not grow exponentially 

in y 1 
2 and y 2 

2 . 

Substituting this expansion into Eq. (3) , we obtain a hierar- 

chy of partial differential equations in the descending order of 
1 
ε , 1 

δ
, 

√ 

δ
ε , 1 √ 

ε
, 1 √ 

δ
, 

√ 

ε
δ

, δε , and etc as follows. 

1 

ε
( L 0 P 0 , 0 ) + 

1 

δ
( M 0 P 0 , 0 ) + 

√ 

δ

ε
( L 0 P 0 , 1 ) 

+ 

1 √ 

ε
( L 1 P 0 , 0 + L 0 P 1 , 0 ) + 

1 √ 

δ
( M 1 P 0 , 0 + M 0 P 0 , 1 ) 

+ 

√ 

ε

δ
( M 0 P 1 , 0 ) + 

δ

ε
( L 0 P 0 , 2 ) + 

√ 

δ√ 

ε
( L 1 P 0 , 1 + L 0 P 1 , 1 ) 

+ ( L 0 P 2 , 0 + M 0 P 0 , 2 + L 1 P 1 , 0 + M 1 P 0 , 1 + L ex P 0 , 0 ) 

+ 

√ 

ε√ 

δ
( M 1 P 1 , 0 + M 0 P 1 , 1 ) + 

ε

δ
( M 0 P 2 , 0 ) 

+ 

δ

ε

√ 

δ( L 0 P 0 , 3 ) + 

δ√ 

ε
( L 1 P 0 , 2 + L 0 P 1 , 2 ) 

+ 

√ 

δ( M 0 P 0 , 3 + M 1 P 0 , 2 + L ex P 0 , 1 + L 1 P 1 , 1 + L 0 P 2 , 1 ) 

+ 

√ 

ε( L 0 P 3 , 0 + L 1 P 2 , 0 + L ex P 1 , 0 + M 1 P 1 , 1 + M 0 P 1 , 2 ) 

+ 

ε√ 

δ
( M 1 P 2 , 0 + M 0 P 2 , 1 ) + 

ε
√ 

ε

δ
( M 0 P 3 , 0 ) + · · · = 0 . (6) 

First, from the O ( 1 ε ) term of (6) we have L 0 P 0 , 0 = 0 which 

yields the y 1 -independence of P 0, 0 since P 0, 0 does not grow 

exponentially in y 1 
2 . Also, we obtain the y 2 -independence of 

P 0, 0 from M 0 P 0 , 0 = 0 which is the O ( 1 
δ
) term of (6). From the 

O ( 
√ 

δ
ε ) term, P 0, 1 is independent of y 1 . From the O ( 1 √ 

ε
) term, 

L 1 P 0 , 0 + L 0 P 1 , 0 = 0 which leads to L 0 P 1 , 0 = 0 because of y 1 - 

independence of P 0, 0 . So, P 1, 0 is independent of y 1 . In this way, 

one can obtain the y 2 -independence of P 0, 1 and P 1, 0 from the 

O ( 1 √ 

δ
) and O ( 

√ 

ε
δ

) terms, respectively. Hence, P 0, 0 , P 0, 1 and P 1, 0 

are all independent of y 1 as well as y 2 . 

On the other hand, the y 1 -independence of P 0, 2 and the y 2 - 

independence of P 2, 0 follows, respectively, from the O ( δε ) and 

O ( ε
δ
) terms of (6). 

Based the independence result above, we now try to obtain an 

equation for the leading order term P 0, 0 . First, from the O (1) term, 

the y 1 , y 2 -independency of P 1, 0 and P 0, 1 gives rise to 

L 0 P 2 , 0 + M 0 P 0 , 2 + L ex P 0 , 0 = 0 . 

Since this can be regarded as a Poisson equation for P 2, 0 or P 0, 2 

with respect to L 0 or M 0 , respectively, by applying the centering 

condition (for the existence of solutions) from the Fredholm 

alternative (cf. Ramm [13] ) to the equation, we obtain 

M 0 P 0 , 2 + 〈L ex 〉 y 1 P 0 , 0 = 0 , 
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