Second-order quadrupolar line shapes under molecular dynamics: an additional transition in the extremely fast regime

Ivan Hung, Gang Wu, Zhehong Gan

PII: S0926-2040(16)30086-8
DOI: http://dx.doi.org/10.1016/j.ssnmr.2016.11.002
Reference: YSNMR753

To appear in: Solid State Nuclear Magnetic Resonance

Received date: 12 October 2016
Revised date: 15 November 2016
Accepted date: 28 November 2016

Cite this article as: Ivan Hung, Gang Wu and Zhehong Gan, Second-order quadrupolar line shapes under molecular dynamics: an additional transition in the extremely fast regime, Solid State Nuclear Magnetic Resonance, http://dx.doi.org/10.1016/j.ssnmr.2016.11.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Second-order quadrupolar line shapes under molecular dynamics: an additional transition in the extremely fast regime

Ivan Hunga, Gang Wub, and Zhehong Gana *

a National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL, 32310, USA.
b Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, K7L 3N6, Canada

* Corresponding author. Fax +1 850 644 1366.
\textit{E-mail address:} gan@magnet.fsu.edu (Z. Gan).

ABSTRACT

NMR spectroscopy is a powerful tool for probing molecular dynamics. For the classic case of two-site exchange, NMR spectra go through the transition from exchange broadening through coalescence and then motional narrowing as the exchange rate increases passing through the difference between the resonance frequencies of the two sites. For central-transition spectra of half-integer quadrupolar nuclei in solids, line shape change due to molecular dynamics occurs in two stages. The first stage occurs when the exchange rate is comparable to the second-order quadrupolar interaction. The second spectral transition comes at a faster exchange rate which approaches the Larmor frequency and generally reduces the isotropic quadrupolar shift. Such a two-stage transition phenomenon is unique to half-integer quadrupolar nuclei. A quantum mechanical formalism in full Liouville space is presented to explain the physical origin of the two-stage phenomenon and for use in spectral simulations. Variable-temperature 17O NMR of solid NaNO$_3$ in which the NO$_3^-$ ion undergoes 3-fold jumps confirms the two-stage transition process. The spectra of NaNO$_3$ acquired in the temperature range of 173 – 413 K agree well with simulations using the quantum mechanical formalism. The rate constants for the 3-fold NO$_3^-$ ion jumps span eight orders of magnitude ($10^2 – 10^{10}$ s$^{-1}$) covering both transitions of the dynamic 17O line shape.

1. Introduction

NMR spectroscopy is a powerful tool not only for structure elucidation but also for probing molecular dynamics. Molecular motion can be probed by monitoring spectral line shapes and a variety of relaxation measurements which cover a wide range of motional time constants from seconds down to nanoseconds. The classic case that revealed the effects of molecular dynamics on NMR spectral line shapes in the early days of NMR [1, 2] is the exchange between...
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات