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a  b  s  t  r  a  c  t

Economic  Model  Predictive  Controllers,  consisting  of  an  economic  criterion  as  stage  cost  for  the  dynamic
regulation  problem,  have  shown  to  improve  the  economic  performance  of  the  controlled  plant.  However,
throughout  the  operation  of  the  plant,  if  the economic  criterion  changes  –  due  to  variations  of prices,
costs,  production  demand,  market  fluctuations,  reconciled  data,  disturbances,  etc.  –  the  optimal  operation
point  also  changes.  In industrial  applications,  a  nonlinear  description  of  the  plant  may not  be  available,
since  identifying  a nonlinear  plant  is a very  difficult  task.  Thus,  the models  used  for  prediction  are  in
general  linear.  The  nonlinear  behavior  of  the plant  makes  that the  controller  designed  using  a  linear
model  (identified  at certain  operation  point)  may  exhibit  a poor  closed-loop  performance  or  even loss  of
feasibility  and  stability  when  the  plant  is  operated  at  a different  operation  point.  A way  to  avoid  this  issue
is  to consider  a collection  of  linear  models  identified  at each  of the  equilibrium  points  where  the plant  will
be  operated.  This  is  called  a  multi-model  description  of  the plant.  In  this  work,  a  multi-model  economic
MPC  is proposed,  which  takes  into  account  the  uncertainties  that arise  from  the  difference  between
nonlinear  and  linear  models,  by  means  of a multi-model  approach:  a  finite  family  of  linear  models  is
considered  (multi-model  uncertainty),  each  of  them  operating  appropriately  in  a  certain  region  around
a given  operation  point.  Recursive  feasibility,  convergence  to the economic  setpoint  and  stability  are
ensured.  The  proposed  controller  is  applied  in two  simulations  for controlling  an  isothermal  chemical
reactor  with  consecutive-competitive  reactions,  and  a continuous  flow  stirred-tank  reactor  with  parallel
reactions.

© 2017  Elsevier  Ltd. All  rights  reserved.

1. Introduction

The main goal of advanced control strategies is to operate the
plants as close as possible to the economically optimal operation
point, while ensuring stability. In the process industries, this objec-
tive is achieved by means of a hierarchical control structure [28,11]:
an economic optimization level – usually referred as Real Time
Optimizer (RTO) – sends the economically optimal setpoints to an
MPC  layer, which calculates the optimal control action to be sent to
the plant, in order to regulate it as close as possible to the setpoint,
taking into account a dynamic model of the plant, constraints, and
stability requirements [23,31].
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The time-scale separation between the RTO and MPC  layers that
this hierarchical control scheme produces has two main conse-
quences on the economic performance of the plant. The first one is
that the economic setpoint calculated by RTO may  be inconsistent
or unreachable with respect to the dynamic layer [17]. A solution to
this issue is to add a new optimization level in between of RTO and
MPC, referred as the steady state target optimizer (SSTO). The SSTO
calculates the steady state to which the system has to be stabilized,
solving a linear or quadratic programming and taking into account
information from the RTO and the linear model used in the MPC
[29,34,21].

The second consequence is produced by the way  the MPC  con-
troller is designed. Usually the MPC  control law is designed to
ensure asymptotic tracking of the setpoint, without taking into
account the issue of transient costs [5]. This way to operate, which
is practically optimal when the setpoint does not change with
respect to the dynamic of the system, may  provide poor economic
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performance in those applications (usually characterized by fre-
quent changes in the economic criterion) for which the cost in the
transient is more significant than the cost at the steady state. Eco-
nomic MPC  [30] is the solution proposed in the last few years to
overcome these drawbacks.

Different ways to approach this control problems have been pro-
posed in literature: Dynamic Real Time Optimizer (D-RTO) [9,17,33]
solves a dynamic economic optimization and delivers target tra-
jectories (instead of target steady state) to the MPC  layer; the
one-layer MPC  strategies integrate the RTO economic cost function
as a stationary part of the MPC  cost function [1,35,2]; Economic
MPC considers the nonlinear economic cost of the RTO as the stage
cost of the dynamic regulation problem. This method has been
widely studied in the last few years, and Lyapunov stability has
been proved for different cases [9,16], resorting to strong duality
assumptions [10,12], and to dissipativity assumptions [5,3,15,24].

From a practical point of view, the economic criterion to be min-
imized may  vary during the operation of a plant, for both: (i) market
fluctuations, which may  cause changes in the cost function and
in the prices that parameterize this function, and (ii) variations in
disturbances estimation or constraints, due to data reconciliation
algorithms. Thus, EMPC formulations characterized by either time-
varying or parameter-varying stage costs seem to be more suitable
[6,7,12].

In general, in industrial applications, a nonlinear description of
the plant may  not be available, since identifying a nonlinear plant
could be a very difficult task. On the other hand, the methods for
the identification of linear models are very easy to implement, and
are common practice in industries. For this reason, MPC  controllers
are designed using a linear model, which may  not represent the
behavior of the plant in all its operation points. For the case of
petrochemical processes, for instance, the plant to be controlled
is nonlinear, but has sparse operation points with different eco-
nomic behaviors. The nonlinear behavior of the plant makes that
the controller designed using a linear model (identified at certain
operation point) may  exhibit a poor closed-loop performance or
even loss of feasibility and stability when the economically opti-
mal  operation point is changed. A convenient form of representing
these plant-model uncertainties is by considering a finite family of
linear models identified at each of the equilibrium points where the
plant will be operated. This way, each operating point allows one to
obtain a linear model sufficiently accurate to describe the system,
and which operates appropriately in a certain region around such
equilibrium point. Furthermore, since not many operating points
are considered in the operation of this kind of systems, only few
linear models could be required to describe the complete opera-
tion of the plant. This approach, called multi-model description of
the plant, is a formulation of robust MPC  which has shown to be of
interest from a theoretical point of view [8,14,13,22] as well as for
practical implementation [28].

In this work, the economic MPC  for changing economic costs
presented in [12], has been extended to the case of a multi-model
representation of the plant and offset-free estimation. To this aim,
a finite family of linear models is obtained, which describes the
behavior of the plant to be controlled, in different operation points.
These points are economically optimal steady states for the plant
under a certain choice of the economic criterion. Following the
idea of [8], the models are required to share the same applied
control actions and a contractive constraint is imposed. However,
to the aim of reducing conservativeness, the models are required
to have only a few control actions (in the optimal control) equal
to each other, while the remaining controls in the sequence are
free degrees of freedom for each model. Recursive feasibility, sta-
bility and convergence to the optimal operation point are always
ensured, no matter which model of the family represents the true
plant.

The proposed controller is applied in two  simulations for
controlling an isothermal chemical reactor with consecutive-
competitive reactions, and a continuous flow stirred-tank reactor
with parallel reactions. The results of such simulations show how
the multi-model approach ensures feasibility and stability when
the economically optimal operation point changes, as well as better
economic performance than nominal offset-free controllers.

The work is organized as follows. In Section 2 the problem is
stated. In Section 3 the proposed multi-model Economic MPC is pre-
sented. In this section, Lyapunov stability of the proposed controller
is proved, and its main properties are presented. Finally, illustrative
examples and conclusions of this study are provided in Sections 4
and 5.

2. Problem statement

Consider a system described by an nonlinear discrete time-
invariant model

x+
p = f (xp, u) (1)

where xp ∈ R
n is the measured state of the plant to be controlled,

u ∈ R
m is the current control vector, and x+

p is the successor state.
Function f(x, u) is assumed to be continuous and differentiable
at any equilibrium point. The solution of this system for a given
sequence of control inputs u and initial state xp is denoted as
xp(j) = �(j;xp, u) where xp = �(0;xp, u). The state of the system and
the control input applied at sampling time k are denoted as xp(k)
and u(k) respectively. The system is subject to hard constraints on
state and control:

xp(k) ∈ X, u(k) ∈ U (2)

for all k ≥ 0.

Assumption 1. X  and U are convex and compact, and both sets
contain the origin in their interior.

The steady-state conditions of the plant (xs, us) are such that (1)
is fulfilled, i.e.

xs = f (xs, us) (3)

Consider now, a nonlinear function feco(x, u, �) that is a measure
of the economic objectives of the plant. The parameter � describes
prices, costs or production goals, that might be varying during the
operation of the plant. This parameter has to be considered as an
input to the RTO layer, resulting from the economic scheduling and
planning, and may  be time-varying due to market fluctuations or
data reconciliation. Thus, let us define the RTO problem as follows:

Definition 1. The optimal operation of the plant is given by the
steady state (xs, us), which satisfies

(xs, us) = argmin(x,u)feco(x, u, �) (4)

s.t. x ∈ X, u ∈ U
x = f (x, u)

Notice that the optimal operation point depends on the value of
�, that is (xs(�), us(�)). However, for the sake of clarity, in what
follows, we will use the notation (xs, us).

Assumption 2. The cost feco(x, u, �) is locally Lipschitz continuous
in (xs, us); that is there exists a constant � > 0 such that,

|feco(x, u, �) − feco(xs, us, �)| ≤ �|(x, u) − (xs, us)|
for all � and all (x, u) ∈ X  × U such that |x − xs| ≤ ε and |u − us| ≤ ε,
ε > 0.
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