
Contents lists available at ScienceDirect

Swarm and Evolutionary Computation

journal homepage: www.elsevier.com/locate/swevo

Global-best brain storm optimization algorithm

Mohammed El-Abd

Electrical and Computer Engineering Department, American University of Kuwait, P.O. Box 3323, Safat 13034, Kuwait

A R T I C L E I N F O

Keywords:
Brain storm optimization
Global-best
Per-variable updates
Re-initialization
Fitness-based grouping
Unconstrained optimization

A B S T R A C T

Brain storm optimization (BSO) is a population-based metaheuristic algorithm that was recently developed to
mimic the brainstorming process in humans. It has been successfully applied to many real-world engineering
applications involving non-linear continuous optimization. In this work, we propose improving the performance
of BSO by introducing a global-best version combined with per-variable updates and fitness-based grouping. In
addition, the proposed algorithm incorporates a re-initialization scheme that is triggered by the current state of
the population. The introduced Global-best BSO (GBSO) is compared against other BSO variants on a wide
range of benchmark functions. Comparisons are based on final solutions and convergence characteristics. In
addition, GBSO is compared against global-best versions of other meta-heuristics on recent benchmark
libraries. Results prove that the proposed GBSO outperform previous BSO variants on a wide range of classical
functions and different problem sizes. Moreover, GBSO outperforms other global-best meta-heuristic
algorithms on the well-known CEC05 and CEC14 benchmarks.

1. Introduction

One class of algorithms used to solve non-linear continuous and/or
discrete optimization problems is Population-based algorithms.
Population-based algorithms maintain a population of individuals
(solutions) and update them over a number of iterations (generations)
until some stopping criterion is met. Population-based algorithms
could be further categorized based on the inspiration behind their
population update mechanism. The first category is evolutionary
algorithms, in which the update process is inspired by the biological
evolution process. These algorithms include Genetic Algorithms (GAs),
Genetic Programming (GP), Evolutionary Strategies (ES), and
Evolutionary Programming (EP). The second category includes swarm
intelligence algorithms, in which the update process is inspired by
some behavior of some living organism. A number of swarm intelli-
gence algorithms are referred to as foraging algorithms as they mimic
the foraging behavior of animals and/or insects. Examples of foraging
algorithms include Particle Swarm Optimization (PSO) [1,2], Ant
Colony Optimization [3], Artificial Bee Colony [4], and many more.
Other swarm intelligence algorithms are inspired by different kinds of
behaviors including for example the egg laying behavior of cuckoos in
Cuckoo Search (CS) [5] and the echolocation behavior of bats in the Bat
Algorithm (BA) [6].

The brain storm optimization (BSO) algorithm [7,8] is a popula-
tion-based algorithm proposed to mimic brainstorming sessions held
by humans. A typical brainstorming session involves gathering a group

of experts having different backgrounds, expertise, and abilities in
order to develop a solution for a problem at hand. Following such a
process helps in successfully solving the tackled problem. The first
version of the developed BSO algorithm had a number of disadvantages
including the need to provide the number of clusters before hand, the
computational complexity of the clustering stage, the lack of a re-
initialization step, and the fixed schedule for updating the step size.
Some of these disadvantages have already been addressed in the
literature by either improving the clustering step [9–11], provide a
better update method [9,12,13], or introduce a re-initialization me-
chanism [14–16]. However, to the best of our knowledge, a global-best
version of BSO has not been proposed before.

In this paper we propose multiple modifications to improve the
performance of BSO. These modifications include adopting a fitness-
based grouping mechanism, using the global-best idea information for
updating the population, and applying the update scheme on every
problem variable separately. The proposed Global-best BSO (GBSO) is
compared against three recent variants of BSO using a suite of 20 well-
known benchmark functions. Moreover, GBSO is compared against the
2011 version of Standard PSO (SPSO) [17], Global-best guided ABC
(GABC) [18] and the Improved Global-best Harmony Search (IGHS)
[19] on the CEC05 [20] and the CEC14 [21] benchmarks for increased
problem sizes.

The rest of the paper is organized as follows: Section 2 gives details
about the BSO algorithm. Different improvements proposed in the
literature to improve BSO are covered in Section 3. The proposed

http://dx.doi.org/10.1016/j.swevo.2017.05.001
Received 4 August 2016; Received in revised form 17 February 2017; Accepted 5 May 2017

E-mail address: melabd@auk.edu.kw.

Swarm and Evolutionary Computation xxx (xxxx) xxx–xxx

2210-6502/ © 2017 Elsevier B.V. All rights reserved.

Please cite this article as: El-Abd, M., Swarm and Evolutionary Computation (2017), http://dx.doi.org/10.1016/j.swevo.2017.05.001

http://www.sciencedirect.com/science/journal/22106502
http://www.elsevier.com/locate/swevo
http://dx.doi.org/10.1016/j.swevo.2017.05.001
http://dx.doi.org/10.1016/j.swevo.2017.05.001
http://dx.doi.org/10.1016/j.swevo.2017.05.001


GBSO is fully detailed in Section 4. Section 5 presents the experimental
study and the reached results. Finally, the paper is concluded in Section
6.

2. Brain storm optimization

In BSO, a population is defined as a collection of ideas. A single
idea represents a solution to the problem. In each iteration, a
population of ideas (solutions) is updated. Initially, ideas are randomly
scattered in the search space. In a single iteration, each idea ideai is
updated as follows:

• First, k-means clustering is used to group similar ideas and the best
idea in each cluster is saved as the cluster center,

• Second, BSO generates a new idea nideai by setting it equal to one of
the following:
– A probabilistically selected cluster center,
– A randomly selected idea from a probabilistically selected cluster,
– The random combination of two probabilistically selected cluster

centers, or
– The random combination of two randomly selected ideas from

two probabilistically selected clusters.
One of these four operations is randomly selected based on a
number of parameters pone−cluster, pone−center, and ptwo−centers.
Moreover, a cluster is probabilistically selected according to its size
(i.e. the number of ideas in the cluster),

• Third, the generated nideai is perturbed using a step-size parameter
ξ and Gaussian distribution,

• Finally, nideai replaces the current ideai if it has a better fitness.
Otherwise, it will be discarded.

The BSO algorithm is shown in Fig. 1.

Algorithm 1. The BSO algorithm.

Require MaxIterations, n, m, pone−cluster,pone−center, and ptwo−centers

1: Randomly initialize n ideas
2: Evaluate the n ideas
3: iter=1
4: while iter MaxIterations≤ do
5: Cluster n ideas into m clusters using k-means
6: Rank ideas in each cluster and select cluster centers
7: foreach idea i do
8: if rand P< one cluster− then
9: Probabilistically select a cluster cr
10: if rand P< one center− then
11: nidea center=i

cr

12: else
13: Randomly select an idea j in cluster cr
14: nidea idea=i

c
j
r

15: end if
16: else
17: Probabilistically select two clusters cr1 and cr2
18: Randomly select two ideas cr

j
1 and cr

k
2

19: r=rand
20: if rand P< two centers− then
21: nidea r center r center= × + (1 − ) ×i

c cr r1 2

22: else
23: nidea r idea r idea= × + (1 − ) ×i

c
j

c
k

r r1 2

24: end if
25: end if
26: ξ rand logsig= × ( )Max Iterations Current Iteration

k
0.5 × −

27: nidea nidea ξ N= + × (0, 1)i i

28: iffitness(nideai) > fitness(ideai) then
29: ideai=nideai

30: end if
31: end for
32: end while
33: returnbest idea

Note that n is the population size, m is the number of clusters,
N(0, 1) represents a Gaussian distribution with mean 0 and a standard
deviation of 1. rand is a uniformly distributed random number
between 0 and 1. Finally, ξ is a dynamically updated step-size and k
is for changing the slope of the logsig function. For more on BSO,
interested readers can refer to [22].

3. Previous BSO improvements

A number of improvements have been proposed in the literature to
improve the performance of BSO by addressing some of its disadvan-
tages.

3.1. The clustering process

To overcome the burden of the clustering process, the authors in [9]
used a Simple Grouping Strategy (SGM) instead of k-means clustering.
In their approach, m seeds are selected randomly at each iteration, and
then each one of the n ideas in the current population are assigned to
the group of the nearest seed. In addition, perturbing the newly
generated idea was done using an idea difference approach. Their
method replaced the ξ parameter with a different factor pr that controls
injecting the open minded element, represented by randomly gener-
ated problem variables, into the idea creation process. Although their
grouping strategy reduced the computational burden of k-means, it still
requires a lot of distance calculations in the search space in order to
assign different ideas to the different groups. Moreover, their grouping
strategy has slightly sacrificed the performance on multi-modal func-
tions. The proposed algorithm provided better results over PSO, DE,
and BSO on a small set of classical functions.

Another attempt to overcome the burden of the clustering process
was reported in [10]. The work introduced the idea of random grouping
to minimize the clustering overhead. This is done by dividing the
population into randomly constructed m clusters choosing the fittest
idea in each group as its center. Although their grouping strategy aimed
at mimicking random discussions between human individuals, it does
not provide any ground basis or similarity measures for clustering. In
other words, the random grouping strategy could be regarded as the
exact opposite of k-means while the SGM previously explained lies
somewhere in the middle.

To overcome the challenge of successfully presetting an appropriate
number of clusters, the authors in [23] proposed to dynamically set the
number of clusters using Affinity Propagation (AP) clustering. AP
continuously changes the number of clusters according to their
structure information. Although AP clustering still requires some
computational effort as similarities need to be calculated between
every two data points, the authors did not comment on the computa-
tional cost of their algorithm in comparison to using k-means. In
addition, no information was given about how the preference for AP
clustering was set although it has a direct effect on the generated
number of clusters. Authors provided experiments showing how their
algorithm provides good deployment of a Wireless Sensor Network.

Yet another approach to improve the clustering stage in BSO was
recently proposed in [11]. The authors used Agglomerative
Hierarchical Clustering (AHC) as it does not require pre-specifying
the number of clusters. Moreover, the probability of creating new ideas
using a single or multiple (two or three) clusters is adapted according to
the quality of solutions generated. However, the authors did not
provide details on how these individuals are generated. The developed

M. El-Abd Swarm and Evolutionary Computation xxx (xxxx) xxx–xxx

2



https://isiarticles.com/article/94855

