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a b s t r a c t 

This work derives how the convergence of stochastic Lagrangian/Eulerian simulations depends on the 

number of computational parcels, particularly for the case of spray modeling. A new, simple, formula is 

derived that can be used for managing the numerical error in two or three dimensional computational 

studies. For example, keeping the number of parcels per cell constant as the mesh is refined yields an 

order one-half convergence rate in transient spray simulations. First order convergence would require a 

doubling of the number of parcels per cell when the cell size is halved. Second order convergence would 

require increasing the number of parcels per cell by a factor of eight. The results show that controlling 

statistical error requires dramatically larger numbers of parcels than have typically been used, which 

explains why convergence has been so elusive. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction to the problem 

The computational fluid dynamics community expects numeri- 

cal schemes to be consistent, i.e. they should converge to the ex- 

act solution as resolution is increased. Without this assurance, the 

modeler can wander aimlessly, confused by pathological numeri- 

cal errors. The present work will identify a simple rule that gov- 

erns convergence and will bring Lagrangian/Eulerian spray simula- 

tion closer to modern standards of simulation quality. The math- 

ematical analysis is intended to also benefit other forms of La- 

grangian/Eulerian simulations, such as bubbly or particle-laden 

flow. 

The first step is to identify what is and what is not understood. 

The typical parts of a Lagrangian/Eulerian spray computation can 

be categorized as follows: 

1. Gas phase equations: The gas phase conservation equations, ex- 

cluding source terms for interaction with the spray, solved in an 

Eulerian frame of reference. 

2. Particle tracking: The governing ordinary differential equations 

that describe the evolution of the tracked particles, solved in a 

Lagrangian frame of reference. 

3. Gas to liquid coupling: The interpolation of gas phase quantities 

to the location of the spray parcels. 
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4. Liquid to gas coupling: The agglomeration of the scattered point 

particle effects into source terms in the continuous phase equa- 

tions. 

The first item is well understood. The second category includes 

the models that describe the evolution of droplets as they move in 

the Lagrangian reference frame. Are et al. (2005) provided anal- 

ysis for the basic equations of spray motion. Spray breakup has 

not been analyzed but is expected, for at least basic breakup mod- 

els, to behave as ordinary differential equations (ODEs) which are 

well understood. Droplet collision is beyond the scope of this pa- 

per and has been studied elsewhere ( Schmidt and Rutland, 20 0 0; 

Abani et al., 2008 ). Gas to liquid coupling is equivalent to interpo- 

lation and was also analyzed by Are et al. 

The final item, representing the effect of the liquid phase on the 

gas phase, has proven to be the most challenging. Here, the numer- 

ical methods accumulate information from the liquid phase about 

mass, momentum, energy, and species contributions to the gas 

phase. These methods must contend with the fact that parcels are 

not collocated with gas phase nodes or finite volume cell centers. 

Further, because of the limited number of parcels used in spray 

computations, there is a statistical uncertainty in these terms. 

Because of this statistical uncertainty, refinement of gas phase 

solution without adequately refining the Lagrangian solution by 

increasing the number of computational parcels can actually re- 

sult in a less accurate answer. Early work by Subramaniam and 

O’Rourke (1998) concluded that the convergence of spray simula- 

tions was conditional on employing a sufficient number of parcels. 
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Fig. 1. General behavior of error when the number of parcels is held constant. This 

situation corresponds to employing Eq. (10) with a value of a = 0 . 

Subsequent analysis by Schmidt (2006) saw similar trends. If the 

number of parcels is held constant while the mesh is refined, the 

error begins to increase after passing an optimum, as shown in 

Fig. 1 . 

There have been several past investigations of liquid to gas cou- 

pling. The work of Stalsberg-Zarling et al. (2004) applied Lagrange 

polynomial interpolation to interphase coupling in order to pro- 

duce a more stable, less mesh-dependent simulation. The work of 

Garg et al. (2007) used several problems that admitted analyti- 

cal solutions in order to empirically study the convergence rate of 

fairly sophisticated coupling schemes. For completeness, they in- 

cluded statistical factors in their tests by varying the number of 

parcels per cell. In order to understand the behavior and causes of 

the error, they modeled deterministic, bias, and statistical contri- 

butions using a framework suggested by Dreeben and Pope (1992) . 

The work of Garg et al. judged the efficacy of these liquid 

to gas coupling schemes based on empirical tests. In later work, 

Garg et al. (2009) developed a parcel number density control sys- 

tem to moderate statistical error and, with the help of a sophis- 

ticated liquid-to-gas source estimation scheme, produced conver- 

gence of a fully-coupled Lagrangian/Eulerian calculation. Their suc- 

cess strongly supports the notion that the distribution of sources 

from the Lagrangian phase to the Eulerian is the crux of control- 

ling overall error. 

In contrast, the work of Are et al. excluded considerations 

of statistical error in both their analytical and empirical tests. 

The analysis took the limit of an infinite number of parcels, 

while the empirical tests used arbitrary, large numbers of parcels. 

They succeeded in showing theoretically, for each of the ele- 

ments listed above, how to achieve second order accuracy. They 

then combined these elements into a full Lagrangian/Eulerian 

simulation and demonstrated second order convergence. Later, 

Schmidt (2006) studied how second order and higher accuracy 

schemes converge considering both spatial and statistical error. 

However, Schmidt only considered liquid-to-gas coupling and only 

for fixed numbers of parcels per cell. 

The outstanding question that has never been answered is: 

“In a Lagrangian/Eulerian simulation, how fast must the number of 

parcels increase in order to observe convergence during mesh refine- 

ment?” Without knowing the answer, one cannot reliably demon- 

strate spray calculation convergence. The present work derives a 

recipe that answers this question and performs demonstrations in 

order to empirically confirm the predictions. 

This effort will add to the body of literature that has empiri- 

cally studied convergence, such as Senecal et al. (2012) . These stud- 

ies have proceeded without analysis to provide guidance. Senecal 

et al. is an example where the authors successfully achieved con- 

vergence by a combination of careful numerical methods and em- 

ploying a substantial number of computational parcels. In a sub- 

sequent section of this paper, their approach will be compared to 

the rule which we derive. 

2. Analysis of a single time step 

Our analysis examines the calculation of particle to gas source 

terms as a function of location in a d dimensional space. The mag- 

nitude of the sources in this analysis is determined by the gas-to- 

particle coupling, reducing the particle-to-gas coupling to a deter- 

mination of how the sources are to be distributed on the gas phase 

mesh. Consequentially, the distribution of sources can be repre- 

sented by a density function f ( � x ) which is estimated from n non- 

uniformly spaced parcels (See Pai and Subramaniam, 2009 for an 

investigation of discrete particle representations of smooth distri- 

bution functions). For each continuous phase cell, the contributions 

of the local parcel sample is summed using a kernel with compact 

support. 

Our approach will be to construct an estimate of the combined 

error due to statistical and spatial contributions. This estimate will 

be dependent on both the number of parcels and the level of spa- 

tial resolution. We will then assert that the number of parcels 

must be tied to the cell size by a simple power law relation, which 

then results in an error estimate that is only a function of cell size. 

Finally, we will calculate the convergence rate of this error. 

The analysis begins with our representation of the kernel used 

to connect parcel contributions to the source term. As reviewed 

by Garg et al. (2007) and Schmidt (2006) there are several ap- 

proaches that can achieve varying degrees of spatial accuracy or 

reduced statistical error. The simplest and most common approach 

in Lagrangian/Eulerian spray simulations is the nearest-node ker- 

nel. This treatment, in a finite volume context, is simply: if a par- 

cel resides in a cell, then all of the contributions from the parcel 

go the gas phase equation for that cell. 

The nearest node kernel can be represented as a function K that 

depends on the dimensionless distance y from the center of the 

cell in a d -dimensional Cartesian space, where m is the index of a 

dimension. 

K m 

( y ) = 1 | y | ≤ 1 

2 

(1) 

The present work will consider the simplified case where the 

kernel is the same in each dimension and the mesh spacing �x m 

is uniform and constant in each dimension, and so the subscript 

m is dropped. The argument of the kernel, y , is defined for the 

j th parcel below, where � x is the location of the nearest cell center. 

Similarly, � x j is the location of the parcel. The symbol ˆ m represents 

a unit vector in the m direction. 

y = 

( 
→ 

x −→ 

x j ) · ˆ m 

�x 
(2) 

The numerical estimate of the source term distribution func- 

tion, f n ( � x ) , is the result of applying the kernel in all dimensions to 

all parcels. Here, n represents the number of parcels in the entire 

domain. 

f n ( 
→ 

x ) = 

1 

n �x d 

n ∑ 

j=1 

d ∏ 

m =1 

K m 

( 

( 
→ 

x −→ 

x j ) · ˆ m 

�x 

) 

(3) 

The mean square error, E 2 , is defined as the square of the 

difference between the true source distribution function, f , and 

the expected numerical value, f n , produced by Eq. (3) . Here, we 

can build on prior effort s to underst and the related problem 

of finding the optimal kernel for estimating density functions. 

Epanechnikov (1969) calculated the mean square error for a d di- 

mensional space and a general kernel. 
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