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a b s t r a c t 

This paper is dedicated to the qualitative analysis as well as numerical simulations of a one 

dimensional open channel hydraulics system which is commonly used in hydraulic engi- 

neering to model the unsteady flow dynamics in a river. First, an output feedback con- 

trol is proposed. Next, the closed-loop system is proved to possess a unique solution in 

a functional space. Furthermore, the spectrum and resolvent sets of the system operator 

are characterized. Then, stability results are stated and proved according to a smallness 

assumption on the feedback gain. The proof invokes Lyapunov direct method. Last but not 

least, we adopt the Chebychev collocation method, that uses backward Euler method and 

the Gauss-Lobatto points, to provide numerical simulations in order to ascertain the cor- 

rectness of the theoretical outcomes. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

The flow dynamics in an irrigation canal are frequently modeled by complex partial differential equations. Notwithstand- 

ing, one of the most used and well admitted in literature is described via nonlinear coupled hyperbolic partial differential 

equations and called de Saint-Venant equations [20] : 
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∂q 

∂t 
+ 

∂ 

∂x 

(
q 2 

U 

)
+ g U 

∂H 

∂x 
= −g US f + kV l d , (1.2) 

in which x is the spatial location ( m ), t is the time ( s ), H is the absolute water surface elevation ( m ), U ( x , H ) is the wetted 

cross-sectional area ( m 

2 ), q ( x , t ) is the flow discharge ( m 

3 / s ), S f ( q , H , x ) the friction slope, l d ( x , t ) is the lateral discharge 

( m 

2 / s ), that is, l d > 0 represents an inflow, and l d < 0 is the outflow. Furthermore, V ( x , t ) is the mean velocity ( m / s ) in section 

U , and g the gravitational acceleration ( m / s 2 ). Lastly, k = 0 if l d > 0 and k = 1 if l d < 0. 

It is worth mentioning that (1.1) reflects the conservation of mass, while (1.2) is the conservation of momentum. In turn, 

it has been noticed that based on the characteristics of the river canal, the above model may have a simpler form using the 

following assumptions (for further discussion on the model, the reader is referred to [9,15,19] ): 
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(i) the inertia terms ∂q 
∂t 

+ 

∂ 
∂x 

( q 
2 

U ) are negligible with respect to g U 

∂H 
∂x 

; 

(ii) the lateral inflow is minimal; 

(iii) the flow variations as well as the bed slope of the river are small. 

Indeed, the assumptions (i)–(iii) lead us to claim that the system (1.1) and (1.2) becomes 
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where B is the water surface width. Next, a simple differentiation of (1.3) with respect to x and (1.4) with respect to t gives 

(see [15,19] for details) 
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which together with (1.3) imply that 
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Whereupon, inserting the last two identities in (1.5) yields 
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Lastly, linearizing the above equation around a reference flow q 0 , we obtain the desired diffusive wave equation: 
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Here, q (x, t) = q 0 + q e (x, t) and q e ( x , t ) is the deviation from the nominal flow q 0 , whereas the positive constants α and β
are respectively the diffusion and the celerity. 

The above model is sometimes known as Hayami model described by a one-dimensional diffusive wave equation (see 

[9,19] ). 

Several techniques and methods have been proposed and utilized in order to provide efficient strategies for management 

of water distribution systems described by (1.6) . For instance, one strategy consists in controlling water flow and this is the 

reason why the above equation with appropriate boundary and initial conditions has been the subject of an active numerical 

analysis by means of several discretization schemes (see [13–19] . In a series of recent articles, the authors in [2,6,7] focused 

on the qualitative analysis of the same equation under the presence of a proportional and/or integral controller but without 

approximating the system, that is, by using the infinite-dimensional systems theory [3,10] . In fact, the boundary integral 

control {
u (t) = K I ξ (t) , 
˙ ξ (t) = y (t) − y r , 

(1.7) 
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