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A B S T R A C T

In this work, a general methodology to extract compact, non-linear transient thermal models of complex thermal
systems is presented and validated. The focus of the work is to show a robust method to develop compact and
accurate non-linear thermal models in the general case of systems with multiple heat sources. A real example of
such a system is manufactured and its thermal behaviour is analyzed by means of Infra-Red thermography
measurements. A transient, non-linear Finite-Element-Method based model is therefore built and tuned on the
measured thermal responses. From this model, the transient thermal responses of the system are calculated in the
locations of interest. From these transient responses, non-linear compact transient thermal models are derived.
These models are based on Foster network topology and they can capture the effect of thermal non-linearities
present in any real thermal system, accounting for mutual interaction between different power sources. The
followed methodology is described, verification of the model against measurements is performed and limitations
of the approach are therefore discussed. The developed methodology shows that it is possible to capture strongly
non-linear effects in multiple-heat source systems with very good accuracy, enabling fast and accurate thermal
simulations in electrical solvers.

1. Introduction

Many compact thermal modelling methods, which use RC networks
to describe heat propagation for certain boundary conditions, can be
found in the literature.

For instance, Szekely has been focusing on infinite RC transmission
lines, Network Identification via Deconvolution (NID) [1,2], the con-
cept of structure function in electronic packages [3]; the work carried
out in the framework of the DELPHI project, aimed at the determination
of Boundary-Condition-Independent (BCI) compact thermal models of
several packages used in electronic industry, see [4,5]. Schweitzer [6]
showed several methods about how to determine the parameters of a
thermal network with a priori defined topology; Model-Order-Reduction
techniques represent an efficient way to reduce model complexity and
such an approach can be found in [7].

Lumped Element (LE) models can be discerned in physical models,
strictly connected to the physical layers and features of the described
systems [8], and empirical models, which aim at capturing a given re-
sponse of the studied system [9,10]. Lumped element physical models
tend to be cumbersome to be built, losing their appeal in terms of
computational lightness. Therefore, it makes sense to invest effort in

developing accurate behavioural models. In the field of compact thermal
models, a general approach to their determination can be found in [11],
while examples of their applications to electro-thermally coupled si-
mulations or coupling with different dynamics can be found in [12–17].

An example of how to insert lumped element models in an FEM
model is shown in [18].

A general methodology which allows to determine lumped element
models should produce accurate, fast, non-linear models; the presence
of multiple heat sources should also be considered. Finite Element
Method (FEM) is currently the simulation tool which offers most of the
required features, at the cost of simulation speed [19,20]; on the other
hand, standard lumped element models offer the best in terms of si-
mulation speed, but they may easily lack in terms of description of non-
linearities and accuracy.

In this work, a robust procedure to generate such compact models
fullfilling all the above-mentioned requirements is described in detail,
together with its validation on an ad-hoc test structure.

2. Determination of Foster networks

In this section, a method to obtain a non-linear Foster network from
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a set of thermal impedance curves obtained at different power dis-
sipation levels is shown.

2.1. Linear Foster networks

The thermal impedance response Zth(t) of a given system is usually
described by a series of K exponential terms:
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with obvious meaning of the symbols. To determine all the parameters,
a logarithmically-spaced set of time constants τk between two reason-
able extremes is generated [21], followed by the minimization of the
difference between the measured response ZF(t) and the calculated one:
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where t0,…,ts are the time instants at which both waveforms are sam-
pled. The fitting parameters in Eq. (2) are the number of stages K and
each of the Rk resistances. The minimization can be performed itera-
tively by increasing the number of stages until a satisfactory fit is
achieved, with the lowest number of stages K as possible. Such algo-
rithm can be easily implemented in Python [22] by using the NumPy
[23] and SciPy [24] modules.

2.2. Non-linear Foster networks

A non-linear Foster network can be thought as a merging of several
Foster networks, each of which has been described like in Eq. (1).

In case of a non-linear system, different power dissipation levels P0,
P1 will lead to different responses:
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with K0≠K1 in general, as well as the Rk0, Rk1 and τk0, τk1 constants.
It is always possible to find a value K ≥ max(K0,K1), for which the

two responses are both equally well described, both with the same
number of terms. Calling Q the number of power dissipation levels, this
observation can be easily generalized to Q>2.

Therefore, if the topology of the network is fixed i.e., the amount of
stages K needed is the same for every power dissipation level, it is
possible to collapse all the linear Foster networks into a single, non-linear
Foster network. The terms R1,R2,…,RK are dependent on the tempera-
ture of the network’s first node (which is the only node with a physical
meaning).

The topology is therefore described in Fig. 1 where only three stages
are drawn, for the sake of simplicity.

Accurate non-linear models can be built only with non-linear re-
sistive terms, keeping the capacitive terms constant [25].

Moreover, numerical problems are reduced if the variation of each
of the terms R1(T), R2(T), …, Rk(T) is monotonic. It was noted that the

best number of stages which satisfies the listed requirements was
characterized by a (not strictly) monotonic behaviour of the non-linear,
resistive terms as a function of the input temperature. Should this not
be the case, it is sufficient to increase the number of stages K.

The procedure to determine the non-linear thermal models here
shown consists of the following steps:

1. Generate a set of Zth curves for increasing power dissipation levels P1,
…,PQ with P1< P2<⋯< PQ;

2. Starting from the lowest power level Pq with q=1, perform the
standard procedure to obtain a linear Foster network which de-
scribes this very thermal impedance; an initial number of stages K
will be obtained;

3. Go to the next power level Pq+1 and perform again the standard
procedure to obtain a linear Foster network, using the coefficients
obtained at the previous step Pq as starting guess points for the
optimization; at the end of this step, q Foster networks, each of
which is made of K stages, are obtained;

4. Check the series of values obtained for R1,…,RK; if the fitting is
consistent for each power level and the monotonicity of each re-
sistive terms is respected, the procedure is successful. Otherwise,
repeat from step 2) with K=K+1.

The monotonicity of the resistive terms can be obtained by careful
selection of the time constants which are used to perform the fit. By
finely increasing the Pq values, the typical time constants will also vary
slightly and the monotonicity of the resistive terms can be easily
achieved.

Basically, the correct Foster network is the one for which the fol-
lowing equations hold:
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A graphical illustration of the process is described in Fig. 2. The
resistance of the k-th stage, calculated in case of a power dissipation Pq
is defined as Rk(Tq), where Tq is the temperature obtained at the input
node of the given Foster network when a step with amplitude Pq is
applied. For higher power dissipation values, different sets of resistive
terms are obtained. Three cases of increasing power levels P1, P2 and P3
are shown as an example in Fig. 2 (a), (b) and (c), respectively. The
merging of these three linear networks results in a non-linear Foster
network, where each resistance non-linearity is defined as a Look-Up-
Table (LUT). For instance, referring to the first stage, the LUT is defined
as: (T1,R1(T1)), (T2,R1(T2)), (T3,R1(T3)) which results in the network
depicted in Fig. 2 (d). It is possible to extend this procedure in order to
include the effect of different ambient temperatures, resulting in a
network where each resistive term is described by a double-entry LUT
(Fig. 2 (e)).

3. Matrix description of thermal systems

The most general representation of a system is in its MIMO (Multiple
Inputs, Multiple Outputs) form. A system with N power sources and M
different locations where the temperature is monitored (see for instance
[26] and [27]) can be described by an (M×N) matrix definition as
follows:
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where the indexes m=1,…,M and n=1,…,N, respectively. SuchFig. 1. An exemplary non-linear Foster network with three stages.
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