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a b s t r a c t 

Turbulent combustion simulations invoke a number of component models for chemical kinetics, turbu- 

lence, flame structure, etc., each of which has an error associated with its structural form and contributes 

to overall uncertainties in simulation results. These model form errors arise from the necessity of making 

assumptions in deriving a model. Conventional approaches to estimating model form errors rely on an ad 

hoc additive error that is then calibrated against experimental or computational data. These approaches 

inherently neglect any a priori knowledge of physics in developing the model error estimate. Instead, in 

this work, an inherently physics-based approach to estimating model form error is developed based on 

the notion of “peer” models. In the generic approach, the error in a candidate model is determined by 

taking the difference between it and an equally plausible alternative “peer” model with a different set 

of assumptions. The generic approach is applied in this work to the modeling of the subfilter mixture 

fraction dissipation rate, which is typically modeled as the ratio of the subfilter mixture fraction variance 

and a time scale. The typical time scale approximation invokes a turbulent time scale, and a “peer” model 

is proposed in which a chemical time scale is invoked to estimate the model form error. Using stochastic 

collocation, the subfilter mixture fraction dissipation rate model form error as well as the uncertainty in 

a model parameter are propagated through LES calculations of the Sandia D Flame utilizing the steady 

flamelet model. The results indicate that the mixture fraction, temperature, and carbon monoxide uncer- 

tainties increase with downstream distance due to an increase in the relative subfilter mixture fraction 

variance and increased sensitivity to the time scale approximations, which diverge in magnitude with 

downstream distance. Uncertainties in these quantities arising from the model form error are shown to 

be more significant than uncertainties arising from the model constant uncertainty. For the temperature, 

uncertainties due to chemical kinetic rate uncertainty are shown to be slightly smaller than uncertainties 

due to the subfilter mixture fraction dissipation rate model error; for the carbon monoxide mass fraction, 

uncertainties due to chemical kinetic rate uncertainty are twice as large as uncertainties due to the sub- 

filter mixture fraction dissipation rate error since carbon monoxide is more kinetically-controlled than 

the temperature. 

© 2017 The Combustion Institute. Published by Elsevier Inc. All rights reserved. 

1. Introduction 

Uncertainties in turbulent combustion simulations arise from 

three distinct sources: uncertainties in boundary or operating con- 

ditions, uncertainties in component model parameters such as 

chemical kinetic rate coefficients, and structural uncertainties as- 

sociated with the form of component models. The first source of 

uncertainties, that is, those associated with boundary conditions, 

have been widely addressed in individual works and in collective 
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workshops such as TNF [1] . In cases where accurate experimen- 

tal measurements of boundary conditions are not available, au- 

thors often explicitly quantify the sensitivity of simulation results 

to boundary condition variables; in cases where accurate experi- 

mental measurements of boundary conditions are available, these 

can be directly (statistically) imposed in simulations (see, e.g., 

[2–4] ). The latter two sources of uncertainties could be consid- 

ered either simulation uncertainties or model errors. In the model 

development community, the prevailing view of these uncertain- 

ties is model errors, and the ultimate goal of model validation 

is to determine where, when, and why model errors are large in 

an effort to either determine the limits of model applicability or 

identify model components that require additional refinement. 
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However, an alternative view is to accept these errors as uncer- 

tainties and develop algorithms to estimate the model error and 

quantify the subsequent prediction uncertainty. 

Effort s in turbulent combustion modeling have focused pri- 

marily on the second class of uncertainties, that is, parametric 

uncertainties in component model coefficients, and have applied 

formal uncertainty propagation techniques. Due to the large num- 

ber of component models involved in a turbulent combustion 

simulation, treating the coefficients of some of the component 

models as uncertainties can assist in isolating the model error as- 

sociated with one of the component models. Mueller et al. [5] first 

applied formal uncertainty propagation techniques to turbulent 

combustion simulations by developing a method to propagate the 

uncertainties in chemical kinetic rate coefficients through a Large 

Eddy Simulation (LES) calculation of a turbulent partially premixed 

piloted jet flame. Their results showed that the simulation uncer- 

tainties in temperature and species mass fractions due to uncer- 

tainties in the chemical kinetic rate coefficients were comparable 

to the discrepancies with the experimental measurements. The im- 

plication is that, due to the uncertainty associated with combus- 

tion chemistry, the discrepancies between the flamelet-based LES 

model and the experimental measurements were insufficient to in- 

validate the combustion model. Related approaches for uncertain- 

ties in chemical kinetic rate coefficients are being pursued by other 

groups [6] . In a later work, Khalil et al. [7] propagated paramet- 

ric uncertainties associated with subfilter transport models, that is, 

the Smagorinksy constant and subfilter Prandtl and Schmidt num- 

bers, through LES calculations of a turbulent nonpremixed bluff

body flame. Their results showed that there was significant uncer- 

tainty in the velocity and scalar fields due to the uncertainty in 

the subfilter transport models. Interestingly, their results showed 

that the uncertainties in the mean axial velocity and root-mean- 

square scalars were attributed to uncertainty in the Smagorinsky 

constant while the uncertainties in the root-mean-square axial ve- 

locity and mean scalars were attributed to the uncertainties in the 

subfilter Prandtl and Schmidt numbers. These results highlight the 

fact that the relative contributions of model uncertainties are a 

strong function of the quantity of interest, and model uncertainties 

may not be apparent in all quantities of interest (i.e., in the cited 

work, focusing only on the mean scalar fields would have led to 

the conclusion that uncertainties associated with the Smagorinksy 

constant are unimportant). 

The third class of uncertainties, that is, structural uncertain- 

ties associated with the form of component models has received 

far less attention. The only works to date have followed the 

same basic data-based approach that is commonplace in a vari- 

ety of domains. First, an additive stochastic model “mismatch”

or “inadequacy” term is “embedded” into a component model 

[8,9] as a representative model for the model form uncertainty. 

Second, this “mismatch” term is calibrated against experimen- 

tal data. Finally, this calibrated model uncertainty is propagated 

through a turbulent combustion simulation to assess the effects 

of this uncertainty on various quantities of interest. The first such 

work following this basic algorithm applied to turbulent combus- 

tion modeling, from Mueller and Raman [10] , sought to assess 

the effects of upstream combustion model errors on downstream 

predictions of soot volume fraction in a turbulent nonpremixed 

piloted jet flame. The error in the combustion model was lim- 

ited strictly to the temperature, and the additive model “inade- 

quacy” term was simply estimated from the baseline model’s dis- 

crepancy with available experimental measurements. The results 

showed that the resulting uncertainty in the downstream soot vol- 

ume fraction prediction was comparable to the experimental un- 

certainties in those measurements. More recent works have intro- 

duced more sophisticated calibration techniques based on Bayesian 

inference [6] . 

While useful in better understanding the relationships between 

input and output uncertainties in turbulent combustion simula- 

tions, data-based approaches suffer from two fundamental flaws as 

a general framework for quantifying model form uncertainty. First, 

the model form uncertainty estimate is only as good as available 

data, and data is inherently limited. There is no guarantee that a 

model “inadequacy” calibrated against a given data set is general, 

and, in many instances, an estimate of the uncertainty of a com- 

ponent model is required when there is no available experimen- 

tal data for this “inadequacy” calibration. Second, purely data-based 

approaches essentially discard a priori knowledge of physics, espe- 

cially fundamental constraints. As an example, in the authors’ pre- 

vious work cited above [10] , the temperature error was presumed 

to be Gaussian, that is, an unbound temperature, which violates 

fundamental laws of thermodynamics. Admittedly, in practice, this 

is latter point is sometimes not a major concern. For this cited 

example, the probability of a temperature far below an environ- 

mental temperature or far above the equilibrium flame tempera- 

ture would be vanishingly small, although not strictly zero. 

Therefore, rather than relying on data-based model “inade- 

quacy” calibration, a new physics-based approach is required for 

estimating model form uncertainty. Unlike data-based approaches, 

physics-based approaches have the potential to be widely applica- 

ble since they will be based on general physical principles rather 

than available data. In this paper, a physics-based approach is de- 

veloped that presumes no knowledge about the specific assump- 

tions that lead to a model. The approach will be demonstrated 

within the context of turbulent combustion modeling, but the 

generic approach can be extrapolated to any domain of interest. 

However, as with any physics-based approach, the specific applica- 

tion details of the generic approach will be different in other do- 

mains. 

In this paper, the physics-based approach is detailed in the next 

section. The approach invokes a “peer” model to develop an es- 

timate for the uncertainty in a model and is applied specifically 

to the modeling of the subfilter mixture fraction dissipation rate, 

a key parameter in turbulent combustion models. In the follow- 

ing two sections, the approach is used to quantify the prediction 

uncertainties in a Large Eddy Simulation (LES) calculation of tur- 

bulent partially premixed piloted jet flame. Uncertainties resulting 

from the subfilter mixture fraction dissipation rate model are com- 

pared with prediction uncertainties resulting from parametric un- 

certainties in chemical kinetic rate coefficients, quantified in previ- 

ous work [5] . 

2. Model form uncertainty quantification: “Peer” models 

Consider a candidate model M , which relates any number of 

input variables x to some output quantity of interest M ( x ) . The 

model is only an approximation to first principles F due to a com- 

bination of a reduced set of input variables and a presumed func- 

tional dependence on the input variables. The model error ε results 

from these two facts and, without loss of generality, can be defined 

as the difference between the model and first principles: 

F ( x, y ) = M ( x ) + ε ( x, y ) , (1) 

where y are additional input variables that the first principles 

relationship F may depend on that the model M does not con- 

sider. The first principles relationship F ( x, y ) is generally not ex- 

plicitly known and follows implicitly from other relationships such 

as the governing equations. As a result, the model error ε( x, y ) 

is unknown and must be estimated. In data-based approaches, 

the model error is calibrated against a finite number of realiza- 

tions of the first principles relationship F ( x, y ) , but, as discussed 

above, such data are not always available. The requirement that 
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