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ABSTRACT

Operational strategies of the Brazilian Electric Sector have direct impacts on operating costs, energy
prices, planning the expansion of the system, etc. These decisions are taken under a high level of uncer-
tainty, as the future availability of water for energy generation is a stochastic variable. Computational
models, routinely based on stochastic optimization, support these decisions. Some of them make use of
streamflow scenarios as entries. In this way, the aim of this paper is to develop a sophisticated statistical
model for multi-site stochastic streamflow simulation. Our approach is based on the extension of vine
copulas for high dimensional spatial applications. The proposed model copes with both temporal and
spatial dependencies of streamflows. At the same time, it can simulate numerous sites concurrently. We
tested our approach on streamflow data from 39 Brazilian hydroelectric power plants. The results indi-
cate that the model can simulate streamflow scenarios largely preserving the features observed in the
recorded streamflow data.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

An electric power system constantly operates under a high level
of uncertainty deriving from many of its components. Dealing with
this uncertainty is crucial for reliable operation of the system. There
are many approaches to represent the uncertainty, such as possi-
bilistic approach, stochastic optimization, information gap decision
theory, interval analysis, and robust optimization [ 1-3]. All of these
techniques have their role in the system and are employed to han-
dle uncertainty. For a general overview, readers are advised to refer
to[1].

Particularly in the case of the Brazilian Energy Sector (BES),
where energy is predominantly produced by hydroelectric power
plants (HPPs), streamflow scenarios are fundamental to accurate
operations and planning of the sector.

These scenarios represent the uncertainty related to hydrologi-
cal regimes and are extremely valuable for stochastic optimization
models that determine the hydrothermal dispatch. A general
overview of stochastic optimization models and its applications in
power systems can be found in [2,4].
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The accuracy of a simulation model depends on its ability to
generate synthetic streamflow data, preserving certain statistical
characteristics, as well as temporal and spatial dependence struc-
tures observed in historical data. Hence, a sophisticated model for
multi-site streamflow simulation must account for all of these fea-
tures. Further, particularly in the BES where the number of HPPs is
huge, the model must account for the dimensionality of the prob-
lem.

Traditionally, multivariate time series models based on the Box
& Jenkins family (ARMA model and its variants) are employed
for this task. See, for example, [4-6]. According to [7], they are
built under some rigid assumptions about the form of dependence
between flow variables or the underlying marginal or joint distri-
butions. Ref. [7,8] point out some drawbacks of these formulations
such as: (a) Streamflow data usually are not normally distributed.
This suggests that the Gaussian assumption implicit in the model
structure may not be adequate. Moreover, such hypothesis limits
the capability of the model in representing non-standard proba-
bility density forms. (b) These models cannot capture non-linear
dependencies structures. (c) The support of the Gaussian distri-
bution is in the whole set of real numbers. Therefore, simulated
scenarios based on Gaussian models may not be realistic, as the
scenarios will be in the range (—o0, o).

Recently, the concept of copulas has been used for stochastic
simulation of streamflow scenarios [8-12]. One advantage of cop-
ulas is their capacity to model any sort of association between
random variables. Also, it separates the marginal behaviour of each
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random variable from the dependence structure that governs the
relationship between variables.

Because of the dimensionality of the BES, the construction of
a model that simultaneously considers several HPPs is vital. In
such high-dimensional settings, vine copulas are a suitable class
of multivariate dependence models. In contrast to ordinary cop-
ulas, which in higher dimensions are very restrictive in terms of
model flexibility, vine copulas allow to model by far more flexible
dependence structures. As vine copulas are composed of a set of
bivariate copulas, they are able to model asymmetric dependence
structures and tail dependencies. However, for vine copulas, the
number of parameters grows quadratically, as the number of vari-
ables increases. Hence, such a model can be computationally costly
for applications with a large number of variables. The extension of
vine copulas for spatial applications introduced by [13] allows to
reduce the number of parameters by exploiting available spatial
information (exogenous variables).

The aim of this research is to propose a periodic model for
stochastic streamflow simulation based on the spatial vine cop-
ula approach of [13]. We exploit the relationship between the
distance of different locations and the river network with the
vine copula parameters. Moreover, the proposed method allows to
model periodic differences in the association between HPPs com-
monly observed in monthly data. The proposed model is applied to
monthly streamflow data of 39 Brazilian HPPs. The results indicate
that the proposed model is capable of simulating streamflow sce-
narios that replicate the main features of the historical streamflow
time series.

This paper is organized as follows. Section 2 gives a brief intro-
duction to copulas in general as well as to the special class of R-vine
copulas. Section 3 describes the developed model, its components,
and the data set to which it was applied. Section 4 contains the
results and Section 5 presents our conclusions.

2. Copula models

2.1. Copulas

A copula C is d-variate distribution function on [0, 1]¢ with all
margins being standard uniform distributions. It can be understood
as a function that connects marginal distributions (Fy, ..., F;) to
form a joint distribution F. The copula C associated with joint dis-
tribution Fis a distribution function C: [0, 1]¢ — [0, 1] such that, for
all (x1,...,x9) e ®? it holds that

- Fa(x®). (1)

If the margins Fy, ..., F; are continuous, then the copula C is
unique. This theorem [14] says that a multivariate distribution
function is a composition of a set of marginal distributions and
a copula, which condenses all information about the dependence
structure of the random vector. The theorem (Eq. (1)) can also be
stated in terms of densities,

F(x', ..., x4 = C(F(x"),..

d
fO o x) = (R, . Fa(xd))Hfi(Xi), (2)
i=1

where c is a d-dimensional copula density obtained by partial dif-
ferentiation of the copula C.

2.2. Vine copulas

Vine copulas (also known as pair-copula constructions) are ben-
eficial in situations where the number of variables d is high. They
are based on the principle of rewriting a multivariate probability
density function as a product of d(d — 1)/2 bivariate (pair-) copula
densities and d univariate marginal densities (see [15]). In contrast

to the well-known ordinary parametric copula families, they rep-
resent a powerful tool to build flexible high dimensional copulas.

The construction methodology behind vine copulas was first
considered by [16] and revisited by [17,18] who proposed a graphi-
cal representation of the pair-copula decomposition. Later, Ref.[15]
addressed statistical inference of vine copulas, comprising estima-
tion and simulation.

The graph structure, that organizes the pair-copula construc-
tion, is called R-Vine ([17,18]). It is a nested set of trees V=
(Tyq, ..., Ty_1) that satisfies the following rules (see [19,20]):

e T; is a tree with node set Ny ={1, ..., d} and edge set E;.

e Tyisatree withnodeset N, =E,_; and edgesetE, (£=2,...,d—1).

e Foranedge {a, b} € E; (£=2,...,d—1) it must hold that the cor-
responding edges a, b € E;,_; share a common node (proximity
condition).

A particular notation is often used for labelling the edges and
nodes of a vine tree sequence (see [21]). Anedgee € E;, £=1, ...,
d—1,isdenoted by {i(e),j(e);De}. It depends on two edges a := {i(a),
j(a);Dq} and b :={i(b), j(b);Dp} in T,_4, that share a common node.
These edges labels will represent the indices used for the condi-
tional copula densities.

The elements i(e) and j(e) make up the conditioned set (C. = {i(e),
j(e)}) and are defined as i(e):=minf{k : k € (A(a)U A(b))\De} and
jle):=max{k : k € (A(a)U A(b))\De}. The conditioning set D, is
denoted by D. = {A(a) N .A(b)} where A(a)= {i(a),j(a), Ds} and
A(b) = {i(b), j(b), Dp}. In the first tree (T;), the conditioning set is
empty. Fig. 1 shows a five dimensional R-vine tree sequence (V =
(Tq, ..., T4)). To illustrate the notation introduced, consider the
unique edge e € T4. It depends on the edges a=13;24 and b=45;23
in Ts. For these edges, A(a) = {1, 2,3,4} and A(b) = {2, 3,4, 5}.
Therefore, the conditioning set of the edge e is D.={2, 3, 4},
i(e)={1}, and j(e)={5}, as can be seen in Fig. 1.

To specify a vine copula distribution of some random vector
U=(U, ..., U9y with U,..., U9~2(0, 1), we need to assign bivari-
ate copulas densities to each edge in the vine tree. We define
the bivariate copula set B = {Cye) jee):p, - € € E¢g, € = 1,...,d -1}
where Ce) je).0, 1S a bivariate copula with density and E, are the
edges of the R-vine tree sequence. Then, a vine copula distribution
of Uis specified through bivariate copula densities cje) je):p,, COTTE-
sponding to the bivariate copulas Cye) jey.p, € B, associated to the
edges E={Eq, ..., E;_1} of a regular vine tree structure V. In addi-
tion, following [13], we define a set uZ:={uX : k € 7} where T is a
subset of the index set {1, ..., d}. Accordingly, the corresponding
vine copula density of U can be written as

d-1
¢,..,d(w) = H HCi(e),j(e);De (3)

{=1eckE, ] ]
* {Citeype (U@ [UPe), Ceyp, (W@ uPe)).

To evaluate the density, [16] has shown that the conditional dis-
tributions Cye)p, (u®uPe) and Cje)p, (#/©|uPe) can be calculated
as
ackl;jf,{ckuf,(uklujfl)7 Clu,l(ul|u‘7”)}

Gy (ulu?=r)

CryA(ukju?) = , (4)

wherek,le1,...,d k # L{lcTgc{1,...,d\k}and J_j;:=7{I}.
As outlined above, a vine copula is composed of d(d — 1)/2 pair-
copulas, which means that a considerable number of parameters
has to be estimated. [13]introduced an extension of vine copulas for
spatial dependence modelling. In their model, they take advantage
of the relationship between spatial variables and the vine copula
parameters to re-parametrize the vine copula. This can radically
reduce the complexity, as it reduces the number of parameters.
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