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A B S T R A C T

The high variability of wild (lowbush) blueberry plants in spatial and genetic structure, in combination with bee
foraging behavior varying between species, and the complexity of these factors interacting over time and space,
are major obstacles to understanding of pollination dynamics subject to environmental change. The bottom-up
modeling paradigm provides an ideal approach to bridging the gap between known mechanisms of individual
organisms and unknown spatial–temporal dynamics of pollination at the field scale. By linking empirical data to
stochastically-based ecological process modeling, we present a spatially-explicit agent-based simulation model
that enables exploration of how various factors, including plant spatial arrangements, outcrossing and self-
pollination, bee species compositions and weather conditions, in isolation and combination, affect pollination
efficiency throughout a blueberry bloom season. The firmly validated open-source model is a useful tool for
hypothesis testing and theory development for wild blueberry pollination researches. Sensitivity analysis sug-
gested that fruit set and resulting measures of productivity such as fruit mass and viable seeds per fruit were
sensitive to parameterization of blueberry genotype or clone size and the amount of blueberry plant cover in a
field. Fruit set due to pollen compatibility was sensitive to ovule number per flower and foraging bee density.
Simulation experiments allowed us to compare bee pollination efficiencies at the bee taxon population level
(honey bees, bumble bees, and native solitary bees), the effect of foraging distance from bee nest or colony site
on fruit set, and test whether the mechanism of gametophytic self-incompatibility (pre- vs. post-zygotic decision
making by the plant) in wild blueberry pollination at the field level matters in estimating yield.

1. Introduction

Wild blueberry (Vaccinium angustifolium Aiton) - a unique crop
species native to eastern North America, is an economically important
fruit crop (Yarborough, 2016). The plant is native to North America
(Jones et al., 2014). It is a common understory woody plant of the
forest. Farmers clear the forest and then manage the plants for a fruit
crop. The plants are not sown and all genotypes are naturally occurring,
but managed where they originally colonized. Because of this the crop
is often referred to as “Wild Blueberry”. Yield depends heavily on cross-
pollination (allogamy) that requires insects, primarily bees (Delaplane
and Mayer, 2000; Drummond, 2016; Asare et al., 2017). However, wild
blueberry yield is not always a simple linear relationship to bee density
(Aras et al., 1996; Yarborough et al., in press Bajcz et al., 2017), it may
also be subject to variation of weather and spatial factors. Temperature
and rainfall can change blueberry bloom initiation and duration (White
et al., 2012) as well as bee foraging activity (Javorek et al., 2002;
Drummond, 2016), which makes interactions between the two

organisms too complicated to be predictable in a straight-forward
manner. Increasing yield, fruit quality and economic stability in wild
blueberry production requires better understanding of the fundamental
ecological processes of cross-pollination and how bee species abun-
dance, plant clone (genet) spatial pattern, and weather conditions in-
teract with each other. Although some mechanisms that drive these
ecological processes have been studied (Bell et al., 2010; Drummond,
2016), we still lack a holistic understanding of how these dynamic in-
teractions affect pollination efficiency under the influence of changing
weather conditions, particularly in a complex context of varying spatial,
temporal, taxonomic and genetic scales. Modeling wild blueberry pol-
lination allows us to decipher hidden relationships between organisms
to better understand the ecological processes of the wild blueberry
cropping system under climate change and to develop improved man-
agement strategies for achieving optimal trade-offs between investment
and yield (Hanes et al., 2015).

Only a few studies on modeling blueberry pollination have been
published, represented by statistical regression models (Eaton and
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Nams, 2012; Kirk and Isaacs, 2012; Yarborough, 2016) and decision
support models (Carrière, 2014). In comparison with statistical models
that suffer limitations in incorporating the stochastic nature of ecolo-
gical processes or in presenting environmental heterogeneities (Filatova
et al., 2013), the Spatially Explicit Agent-based Modeling (SE-ABM)
approach for pollination dynamics offers an alternative lens for un-
derstanding the effects of interactions between processes on the in-
dividual plant and bee level. Using this approach it is possible to
identify interactions within higher-level orders (e.g., pollination effi-
ciency) that emerge (Qu et al., 2013). In past decades, SE-ABMs have
been used intensively for pollination modeling, such as predicting bee
abundance for specific landscapes (Groff et al., 2016), exploring the
effects of pollinator density-dependent preference on pollination (Rands
and Whitney, 2010), revealing optimal landscape pattern by examining
spatial autocorrelation in honeybee foraging behavior (Henry et al.,
2012) and investigating environmental effects on bee movement
(Rands, 2014). These successful SE-ABM applications enhanced our
confidence that SE-ABM is a valid technical methodology being able to
provide novel insights into complex ecosystem dynamics. However, to
our best knowledge, we still have not seen SE-ABMs that are able to
address specific crop pollination requirements, such as: (1) generating
realistic wild blueberry spatial structure; (2) representing plant genetic
diversity in terms of pollen compatibility; (3) formulating bee foraging
behavior for different taxa, and (4) validating model output against
empirical data, which have been considered to be critical to make
precise assessments of wild blueberry pollination efficiency.

In this study, we present an SE-ABM that meets the four require-
ments for wild blueberry pollination research, and describe the mod-
eling logic as well as verification, validation and sensitivity analysis for
model assessment. Information regarding model availability, deploy-
ment and update is given for user assistance. In addition, we use the
model to run three sets of simulations in order to answer the following
questions: (1) What are the efficiencies of the three taxa groups of bees
(honey bee, bumble bee queens, and native solitary bees) at the po-
pulation level for pollination of wild blueberry? (2) What is the effect of
clone distance to bee nest or colony on expected fruit set and how might
this differ with bee taxon? and (3) Does the physiological mechanism of
self-incompatibility affect the results of pollination?

2. Methods

2.1. Modeling logic

We modeled wild blueberry pollination in five stages: (1) identified
the significant objects or entities and processes (guided by domain
experts); (2) represented entities as agents in a spatially-explicit en-
vironment; (3) scheduled agents in appropriate temporal scales (guided
by domain experts); (4) parameterized agents with empirical data and
(5) built the graphic user interface. We used the standard ODD
(Overview, Design concepts, and Details, Grimm et al., 2010) protocol
to describe the simulation model (Appendix A: Model description).

Entities and processes were defined by identification of relevant
organisms and decomposing their interactions into key ecological pro-
cesses. The model consists of two types of entities: (1) regular entities,
e.g., blueberry fields, blueberry clones, stems and flowers and bee
pollinators that are visual objects in the real world wild blueberry
production system; and (2) virtual entities, marked as gray rectangles,
such as the environment, system scheduling, weather and phenology
that provide spatial and temporal reference for coordinating the inter-
actions among regular entities (Fig. 1). All entities are organized in a
continuous topology in the environment consisting of one or more wild
blueberry fields, each of which have a default 2500m2 size or can be
user defined (depends on memory availability as well as computational
speed of the host computer).

Wild blueberry clones (genetically distinct plants referred to as
genets, Bell et al., 2009) and bees are the two primary organisms whose

key ecological processes are represented. We selected four bee taxa
“types” as a representation of the bee community associated with Maine
wild blueberry agroecosystem (honey bee (Apis mellifera L.), bumble
bee (Bombus sp.), digger bee (Andrena sp.), and mason or leafcutting
bee (Osmia sp.). This is a simplification of the agroecosystem that is
characterized by more than 120 bee species, Bushmann and
Drummond, 2015). Common bee species that we have field data for that
was used in parameterization of this model were Bombus ternarius and
B. impatiens for the bumble bee queens, Andrena carlini, A. vicina, and A.
Carolina for the digger bees, and Osmia atriventris and O. inspergens for
the mason bees. The clone processes modeled are vegetative growth
(including clone rhizome horizontal spatial expansion) and re-
productive growth and phenology (including physiological timing of
bloom, production of pollen within flowers on a per stem basis, and
acquisition of pollen on floral stigmas, compatible pollen recognition,
pollen tube fertilization of ovules, and seed production). The clone
dynamics, except pollen tube fertilization of ovules and seed fertiliza-
tion are clone-specific. The bee processes modeled are taxon-specific
and represent: floral search behavior, flower visitation (including
pollen extraction and pollen deposition on stigmas) and return to and
occupation of nest site (Fig. 2). The interactions between these ecolo-
gical processes may be spatial, temporal, taxonomic, and genetic or
weather relevant, e.g., a flower might accept pollen grains depending
on its age (T) and pollen genotype (G); a bee will leave its nest to search
for flowers according to the bee species-specific foraging activity (X)
subject to weather conditions (W) when the bloom signal (T) has been
received. The two organisms are connected via the temporal signaling
for the beginning of bloom season, spatial sensing during flower
searching and pollen exchange via bee-flower contact.

The entities are modeled as agents interacting with each other in a
virtual environment. The environment is represented as continuous
space and is referenced with a Cartesian coordinate system. A wild
blueberry field is composed of a number of spatially scattered clones.
Stems with leaves and flowers attached are randomly distributed within
a clone. Bees are spatially initialized by nest site that might be arranged
in specific locations in and around a field dependent upon the bee taxa.
Bee foraging is modeled as searching and flower visiting from one
flower to another that is determined by species-specific flight speed and
heading. Pollination, the interaction between plant and bee is defined
as pollen exchange at one flower that is located on a specific stem in a
specific clone.

The simulation of bloom season covers approximately 30∼45
Julian days (a function of growing degree days (GDD)) after the end of
the model initialization stage in which all entities are created and ar-
ranged. Then all agents are scheduled according to wild blueberry
phenology on daily basis for blueberry development, or on minute basis
for bee foraging (Fig. 3). Table A1 (supplemental materials) lists all of
the entities or agents, their parent entities, the state variable names,
and descriptions of the entities. We determined a simulation step is one
execution within which a bee can accomplish its activity, i.e. one step
for searching or handling flowers in one stem. A different setting for this
state variable is used because bee foraging is computationally intensive,
particularly in the case of a large abundance of bees or community of
bees (multiple taxa) and blueberry clones. When flowers start
blooming, bees begin foraging. If a bee can perform one step in 2 min,
on average, then it becomes active (completes one cycle) every 2 min
(parameter: minutes per step, see parameter Table A2 for detail about
taxon specific bee foraging). A cycle per day= 15 h ∗ 30 cycles per
hour= 450 cycles per day. We set a period of 8 h for one day con-
sidering bee forage between sunrise and sunset, rather than a full day.
This is based upon our observations in the field (Drummond, 2016), but
in addition, air temperatures in the spring during bloom will generally
truncate foraging to less than 8 h per day on most days in may and
June. Blueberry clones are scheduled differently, one cycle per day all
through the bloom season

To incorporate the stochastic nature of organisms and their
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