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Here we propose a new simulation-optimization model (S-O) for aquifer parameter estimation by coupling radial 

point collocation meshfree method (RPCM) with cat swarm optimization (CSO). The decision and state variables 

are zonewise transmissivity values and hydraulic heads at the predefined locations, respectively. The hydraulic 

head values obtained using RPCM acts as input for the CSO model. The RPCM-CSO model minimize sum of the 

weighted squared difference of simulated and observed hydraulic heads for different realization of transmissivity 

values. Further for comparison, RPCM model is coupled with particle swarm optimization (PSO) and elitist- 

mutated PSO (EMPSO). The RPCM-CSO model has been applied to estimate the zonal transmissivity values of 

a synthetic aquifer for validation and to a field problem. For synthetic problem, the transmissivity values are 

compared with available results. The RPCM-CSO model is more accurate than other models based on the genetic 

algorithm (GA) and PSO. For the field problem, average percentage error in parameter estimation using RPCM- 

CSO model is 1.555%, for RPCM-PSO is 3.145% and for RPCM-EMPSO is 2.270%. Further a reliability analysis 

carried out showed that RPCM-CSO model is accurate and efficient to estimate the transmissivity values. This 

study showed the effectiveness of RPCM-CSO model for aquifer parameter estimation. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Scientific assessment of aquifer parameters such as transmissivity, 

hydraulic conductivity, storativity, areal recharge, etc. is of utmost 

importance for the proper management of groundwater resources. 

The accuracy of groundwater flow and transport model predictions 

relies on the ability to accurately and reliably quantify these unknown 

parameters. Hence parameter estimation in groundwater using inverse 

modeling is a major component of groundwater flow and contaminant 

transport modeling [1] . The inverse problem aims at the optimal 

determination of the aquifer parameters like transmissivity, hydraulic 

conductivity, storativity and areal recharge by the observation of state 

variables collected over a period of time and space domain. Inverse 

modeling has been widely attempted by a number of researchers 

[2–10] . There is a considered opinion that it improves the quality of 

groundwater models and yield results that are generally not readily 

available through non-automated calibration efforts. It is also observed 

that inverse modeling substantially reduces the time required for ob- 

taining aquifer parameters [11] . Simulation-optimization (S-O) models 

are extensively used in previous studies to estimate aquifer parameters 

by inverse modeling approach [3,5–7] . 
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The groundwater flow processes are usually simulated by numerical 

methods like Finite Element Method (FEM) [12–15] , Finite Difference 

Method (FDM) [ 13,14,16 , and 17 ], Boundary Element Method (BEM), 

[18] , Analytical Element Method (AEM) [19,20] etc. All these methods 

have their own advantages as well as disadvantages. The AEM is not 

suitable to simulate transient flow condition or highly heterogeneous 

media [20] . The FDM/FEM uses a predefined grid/mesh where the 

groundwater flow equation is approximated by a set of algebraic 

equations for the chosen grid/mesh in the system. These methods are 

computationally expensive for large-scale problems due to the prepro- 

cessing effort required. The Meshfree (MFree) methods are relatively 

new techniques, and recently have been applied to simulate ground- 

water flow and contaminant transport processes [21–27] . Further, the 

accuracy and computational efficiency of meshfree models such as 

RPCM is well established [21,23,26] . The MFree method establishes 

a system of algebraic equations without the use of a predefined mesh 

but uses a set of nodes scattered within the problem domain as well 

as on the boundaries of the domain. The absence of meshing when 

solving for large-scale problems can save substantial cost and significant 

reduction in computational time on preprocessing which is one of the 

main advantages of MFree methods [28,29] . In this study, radial point 

collocation-based meshfree method (RPCM) is adopted for simulating 

groundwater flow. Recently the RPCM is widely used for solving many 

groundwater flow related issues [21,23,24] . The computational benefits 

of MFree methods over mesh based method (FEM) are discussed by 
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Thomas et al. [26] . RPCM comes in the category of ideal or true mesh- 

free methods (strong form) where meshing is not required throughout 

the process of formulating and solving the governing equations. Further 

Mesh-Free methods are more accurate and computationally efficient in 

simulating advection-dominated transport problems than mesh-based 

method [21] . Hence, MFree-methods are better numerical approach for 

groundwater flow and transport simulation [21,23,24,26] . 

In the inverse models to estimate aquifer parameters, the simulation 

model is usually linked with an optimization model. The optimization 

model repetitively executes the simulation model in a way to reduce 

the difference between the simulated and field observed values. In 

earlier studies, many heuristic optimization algorithms, such as Genetic 

algorithm (GA) [3,6,7] , Simulated Annealing (SA) [30,31] , Differential 

Evolution (DE) [32,33] , Particle Swarm Optimization (PSO) [34] and 

Ant Colony Optimization (ACO) [35,31] have been used for aquifer 

parameter estimation by inverse modeling. Heuristic optimization 

methods do not require derivative calculations or initial point to start 

search processes unlike traditional gradient-based methods, which is a 

major advantage [19] . Mattot et al. [36] provided a comparative study 

for groundwater remediation using various optimization algorithms, 

such as: Genetic algorithm-GA, Conjugate gradient-CG, Particle swarm 

optimization-PSO, Random search algorithm-RND and claimed the 

superiority of PSO, [36] . Ketabchi and Ashtiani [37,38,39,40] also 

compared the application of seven evolutionary algorithms which 

were Differential evolution (DE), GA, Particle swarm optimization 

(PSO), Artificial bee colony optimization (ABC), Continuous ant colony 

optimization (CACO), Simplex simulated annealing (SIMPSA), Shuffled 

complex evolution (SCE), and Harmony search (HS) for optimal man- 

agement of coastal groundwater and suggested CACO and PSO based 

on solution accuracy and computational time for further application in 

coastal groundwater management problems. It is reported that CACO 

and PSO based models have better convergence rate when compared 

to other evolutionary algorithms. However, PSO is prone to premature 

convergence or stagnation point error [41,42] . 

A relatively new heuristic optimization algorithm viz., Cat Swarm 

Optimization (CSO) introduced by Chu and Tsai [43] is found to be 

better than GA, SA and PSO [ 43–45 , and 19 ]. Application of CSO is 

found in various engineering fields such as deployment of wireless 

sensor, clustering, linear phase filter design, infinite impulse response 

system identification, parameter identification of solar cell models, 

groundwater quantity and capture zone management analysis [19] . 

However, to the authors ’ best knowledge, any application of CSO for 

aquifer parameter estimation is not yet reported. 

In this study, the main objective is to develop a simulation- 

optimization model for aquifer parameter estimation by combining 

Meshfree RPCM with cat swarm optimization (CSO). The groundwater 

flow processes have been simulated by radial point collocation method 

(RPCM). The RPCM model was also coupled with PSO and EMPSO to 

develop RPCM PSO and RPCM EMPSO models. The RPCM-CSO model 

is applied to estimate zonal transmissivity values of a hypothetical and 

a field aquifer. The performance of RPCM-CSO model is also compared 

with the results of RPCM-PSO and RPCM-EMPSO model. Further a 

reliability analysis is done to check the accuracy of the developed 

model. The use of meshfree RPCM method coupled with cat swarm 

optimization (CSO) for aquifer parameter estimation has been found 

to be effective and innovative in the field of groundwater inverse 

modeling. 

2. Methodology 

In this study, the groundwater flow processes have been simulated 

using radial point collocation-meshfree method (RPCM). The RPCM 

is further coupled with cat swarm optimization (CSO) and Particle 

optimization (PSO) to develop simulation-optimization models for 

aquifer parameter estimation. Brief descriptions of the groundwater 

flow equation, meshfree based radial point collocation method, cat 

swarm optimization and particle swarm optimization are given in the 

following sub-sections. 

2.1. Groundwater flow equations and boundary conditions 

The groundwater flow equation in a two-dimensional inhomoge- 

neous confined aquifer can be expressed as [3] 
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The initial condition used for transient flow analysis is given as 

ℎ ( 𝑥, 𝑦, 0 ) = ℎ 𝑜 ( 𝑥, 𝑦 ) ; 𝑥, 𝑦 ∈ Ω (1b) 

There are two kinds of boundary condition (BC): prescribed head 

and prescribed flux boundary 

Prescribed head ( Dirichlet BC ) ∶ ℎ ( 𝑥, 𝑦, 𝑡 ) = ℎ 1 ( 𝑥, 𝑦, 𝑡 ) ; 𝑥, 𝑦 ∈ Ω1 (1c) 

Prescribed flux ( Neumann BC ) ∶ 𝑇 𝜕ℎ 
𝜕𝑛 

= 𝑞 1 ( 𝑥, 𝑦, 𝑡 ) ; 𝑥, 𝑦 ∈ Ω2 (1d) 

Where h (x, y, t) is the piezometric head; T x and T y are the trans- 

missivity in x and y direction; S is the storage coefficient; Q w 

is the source or sink; 𝜕ℎ 

𝜕𝑛 
is the normal derivative to the 

boundary; h o (x, y) is the initial head in the flow domain; h 1 
(x, y, t) is the hydraulic head value; q 1 (x, y, t) is the known in- 

flow rate; q is the recharge rate; Ω is the flow domain. 

2.2. Meshfree point collocation method 

The Mfree method is used to establish a system of algebraic equa- 

tions for the whole problem domain without any predefined mesh 

for the domain discretization [28] . Field nodes are scattered on the 

boundaries and within the problem domain not for discretizing but 

only for representing the study area. They do not form a mesh, which 

means any prior information on the relationship between the nodes 

for the interpolation or approximation of the unknown functions of 

field variable is not required [29] . Here, point collocation method 

(PCM) with standard multi quadratic radial basis function is used for 

developing the groundwater flow model. 

The approximation of a function h ( x ) within the local support 

domain is constructed as a linear combination of n radial basis function 

[29] . Here no polynomial basis function is considered. By considering 

pure RBF function, the nodal hydraulic head can be expressed as, 

ℎ ( 𝑥 ) = 

𝑛 ∑
𝑖 =1 

𝑅 𝑖 ( 𝑥 ) 𝑎 𝑖 = 𝑅 

𝑇 ( 𝑥 ) 𝑎 = Φ𝑇 ( 𝑥 ) ℎ 𝑠 (2) 

where R i (x) is the radial basis function (RBF); n is the number of 

nodes in the support domain; and a i is the unknown coefficient to be 

determined; 

Multi-quadratics radial basis function (MQ-RBF) is used to develop 

shape functions here, i.e. 
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where, d c is the average nodal spacing for all the nodes in local support 

domain; (x, y) are the coordinates of the point of interest (data site); 

(x i , y i ) are the coordinates of any node in the support domain of the 

point of interest (center point); q and 𝛼c are the shape parameters. The 

MFree model with a q value of 0.98 gives accurate results [21,26] . 

The unknown coefficients a i in Eq. (2) are determined by enforcing 

the interpolation function to pass through all n nodes within the support 

domain [29] . 
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