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a  b  s  t  r  a  c  t

Equality-constrained  simulation  optimization  problems  (ECSOP)  involve  the  finding  of optimal  solutions
by  simulation  within  a well-defined  search  space  under  deterministic  equality  constraints.  ECSOPs  belong
to the class  of NP-hard  problems.  The  large  search  space  makes  them  difficult  to  solve  in  a short  period
using  conventional  optimization  techniques.  An approach  that merges  the  crow  search  (CS) into  ordinal
optimization  (OO),  abbreviated  as  CSOO,  is  developed  to  find  a near-optimal  solution  to  the  ECSOP  within
a  reasonable  time.  The  proposed  approach  has  three  phases,  which  are  surrogate  model,  exploration  and
exploitation.  First, a surrogate  model,  based  on  the  multivariate  adaptive  regression  splines, is used  to
evaluate  the fitness  of a solution.  Next,  an  enhanced  crow  search  algorithm  is  used  to  find  N  excellent
solutions  in  the  search  space.  Finally,  an  intensified  optimal  computing  budget  allocation  is  used  to find
a  near-optimal  solution  among  the  N  excellent  solutions.  The  proposed  CSOO  approach  is applied  to
a  three-stage  ten-node  network-type  production  line,  and  the  formulated  problem  is  an  ECSOP  with
a large  search  space.  The  developed  formulation  can be used  for network-type  production  lines  with
any  distribution  of  arrivals  and  production  times.  Simulation  results  that  are obtained  using  the CSOO
are compared  with  those  obtained  using  four  competing  methods  Test  results  reveal  that  the  proposed
approach  yields  a near-optimal  solution  of  much  higher  quality  than  obtained  using four  competing
methods,  and  with  a  much  higher  computing  efficiency.

© 2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Equality-constrained simulation optimization problems
(ECSOP) involve the finding of optimal solutions by simulation
within a well-defined search space under deterministic equality
constraints [1–3]. The ECSOP is solved by simulations, using simply
a computer-based mathematical model or a real-world complex
calculation of a physical system [4]. The goal of the ECSOP is to
find the optimal settings of a physical system that optimize its
performance under deterministic equality constraints. An ECSOP
is an NP-hard problem [5]; the class of such problems is a special
class of optimization problems for most of which probably no
polynomial-time search methods exist. In practice, the large
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search space makes finding an optimal solution by conventional
optimization within a short period very difficult.

Various methods had been developed for solving NP-hard
optimization problems including, for example, gradient search
methods [6] and heuristic methods [7]. Gradient search methods
[6], such as the steepest descent method and the conjugate gradi-
ent method, may  become trapped at a local minimum and converge
very slowly. Heuristic methods [7] such as simulated annealing
(SA), Tabu search (TS), evolutionary algorithms (EA) [8] and swarm
intelligence (SI) [9] are used to find global optimal solutions. How-
ever, the quality of the solutions that are found by SA and TS
depend strongly on fine parameter tuning. EA [8] are stochastic
search methods based on natural biological evolution, and apply
the principle of “survival of the fittest” to yield successively bet-
ter approximations to an optimal solution. EAs are of three basic
types – genetic algorithms (GA), evolution strategies (ES), and evo-
lutionary programming (EP). Although some EP algorithms can be
proved to converge asymptotically based on the A* accessibility-
type assumption [10], the accuracy of a solution that is obtained in a
limited computational time cannot be guaranteed in most instances
of EA.
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SI [9] is the intelligent behavior that emerges from the collec-
tive behavior of many autonomous agents with a common group
objective, and is observed in natural systems such as flocks of birds,
schools of fish, and colonies of ants or bees. Some popular SI tech-
niques include particle swarm optimization (PSO), artificial bee
colony (ABC), ant colony optimization (ACO), social cognitive opti-
mization (SCO), harmony search (HS), the bat algorithm (BA), and
the crow search algorithm (CSA) [11,12]. Among them, Sun et al.
proved the global convergence of the improved SCO [13]. Further-
more, the stochastic PSO is guaranteed to convergence to the global
optimization solution with probability one [14]. Most of these SI
techniques require only objective values and achieve a balance
between exploration and exploitation. Although existing SI meth-
ods have some successful applications [15], numerous significant
technical hurdles and barriers are yet to be overcome [16].

An ECSOP is difficult to solve because (i) evaluation of the per-
formance is time-consuming; (ii) the search space is large; and
(iii) all deterministic equality constraints must be satisfied simul-
taneously. The goal of this work is to solve ECSOPs effectively and
efficiently. To resolve issues (i) to (iii) simultaneously, the ordinal
optimization (OO) theory [17] is used to find a near-optimal solu-
tion quickly. OO supplements existing optimization approaches,
but is not itself an optimization method. OO theory resolves the
computational difficulty of system optimization by considering
order rather than value, and guaranteeing that the solution is good
enough rather than the best with high probability. The first step
in OO is to evaluate all solutions rapidly using a crude evalua-
tion to generate a selected subset. A crude evaluation tolerates
large modeling noise. OO theory states that the order of solutions
is probably maintained when they are crudely evaluated, and the
soundness of order preservation is more closely related to evalu-
ating accuracy [17]. Next, a candidate subset is chosen from the
selected subset. Finally, solutions in the candidate subset are eval-
uated by an accurate evaluation, and the one with the best system
performance is the required good enough solution. An accurate
evaluation yields accurate estimates of system performance. The
OO theory has been extensively employed to solve many NP-hard
optimization problems, including those related to the hotel booking
limits [18], stochastic economic lot scheduling [19], and assemble-
to-order systems [20].

To reduce the computing time required to solve an ECSOP, an
approach that merges crow search (CS) [11] into ordinal opti-
mization (OO) [17], abbreviated to CSOO, is developed to find a
near-optimal solution in a short period. The CSOO approach has
three phases, which are surrogate model, exploration and exploita-
tion. First, a surrogate model that is based on the multivariate
adaptive regression splines (MARS) [21] is utilized to evaluate the
fitness of a solution. Next, an enhanced crow search algorithm
(ECSA) is used to determine N excellent solutions from the entire
search space. Finally, intensified optimal computing budget allo-
cation (IOCBA) is used to find a near-optimal solution among the
N excellent solutions. These three phases dramatically reduce the
required computational cost of solving an ECSOP.

The proposed CSOO is applied to solve the buffer resource
allocation problems (BRAP) of network-type production lines in
automated manufacturing systems (AMS). The purpose of the BRAP
is to allocate limited resources efficiently and meet desired objec-
tives effectively under deterministic equality constraints. The BRAP
of a network-type production line is formulated as an ECSOP that
has a large search space. The first contribution of this work is the
development of a CSOO approach to find a near-optimal solution to
an ECSOP with a lack of structural information within a reasonable
computing time. The second contribution is the application of the
developed approach to maximize the throughput of the network-
type production lines.

The remainder of this paper is structured as follows. Section 2
presents the proposed CSOO to determine a near-optimal solution
of the ECSOP. Section 3 describes a three-stage ten-node network-
type production line which is formulated as an ECSOP and employs
the proposed CSOO to this ECSOP. Section 4 demonstrates the test
results and compares the results with those obtained by four com-
peting methods. Finally, Section 5 makes conclusions.

2. Merging crow search into ordinal optimization

2.1. Problem statement

The formulation of the considered ECSOP can be described as
follows

max  E[f (x)] (1)

subject to gj(x)=dj, j = 1, . . .,  m. (2)

L ≤ x ≤ U. (3)

where x = [x1, . . .,  xn]T is an n-dimensional solution vector, L = [L1,
. . .,  Ln]T is the lower bound, U = [U1, . . .,  Un]T is the upper
bound, f(x) represents the objective function, E[f (x)] denotes the
expected objective value, gj(x) denotes the jth deterministic equal-
ity constraint, m represents the number of deterministic equality
constraints, and the search space is defined by the bounds. Multiple
simulation runs are conducted to estimate accurately the expected
objective value. However, performing an infinitely long running
simulation is impossible. The standard approach is to approximate
the expected objective value by the sample mean, which is defined
as follows.

f̄ (x) = 1
T

T∑
t=1

ft(x) (4)

where T denotes the total number of simulation runs, ft(x) is the
objective value of the tth simulation run. The value of f̄ (x) is an
approximation to E[f(x)], and f̄ (x) becomes a better estimate of
E[f(x)] as T increases. Since the deterministic equality constraints
are soft, a quadratic penalty function [22] can be used to transform
a constrained optimization problem into the following uncon-
strained one.

F(x) = f̄  (x) − �

2

m∑
j=1

(
gj(x) − dj

)2

(5)

where � > 0 is the penalty parameter. Let Ta denote a sufficiently
large value of T. In the sequel, the accurate evaluation of (4) is
defined as when T = Ta. For simplicity, we  let Fa(x) represent the
objective value of the unconstrained problem (5) for a given x using
accurate evaluation.

In general, the proposed solution method can be used to solve
an inequality-constrained simulation optimization problem with
deterministic inequality constraints, gj(x) ≤ dj, j = 1, . . .,  m [23,24].
Similarly, a quadratic penalty function [22] can be used to transform
the constrained optimization problem into the following uncon-
strained one.

F(x) = � × f̄ (x) − (1 − �) ×
m∑
j=1

PFj(x) (6)
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