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a b s t r a c t

Combined simulation-optimization (S/O) schemes have long been recognized as a valuable tool in coastal
groundwater management (CGM). However, previous applications have mostly relied on deterministic
seawater intrusion (SWI) simulations. This is a questionable simplification, knowing that SWI models
are inevitably prone to epistemic and aleatory uncertainty, and hence a management strategy obtained
through S/O without consideration of uncertainty may result in significantly different real-world out-
comes than expected. However, two key issues have hindered the use of uncertainty-based S/O schemes
in CGM, which are addressed in this paper. The first issue is how to solve the computational challenges
resulting from the need to perform massive numbers of simulations. The second issue is how the man-
agement problem is formulated in presence of uncertainty. We propose the use of Gaussian process
(GP) emulation as a valuable tool in solving the computational challenges of uncertainty-based S/O in
CGM. We apply GP emulation to the case study of Kish Island (located in the Persian Gulf) using an
uncertainty-based S/O algorithm which relies on continuous ant colony optimization and Monte Carlo
simulation. In doing so, we show that GP emulation can provide an acceptable level of accuracy, with
no bias and low statistical dispersion, while tremendously reducing the computational time. Moreover,
five new formulations for uncertainty-based S/O are presented based on concepts such as energy dis-
tances, prediction intervals and probabilities of SWI occurrence. We analyze the proposed formulations
with respect to their resulting optimized solutions, the sensitivity of the solutions to the intended relia-
bility levels, and the variations resulting from repeated optimization runs.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

Groundwater withdrawal in coastal aquifers needs to be man-
aged based on optimal management strategies in order to prevent
seawater intrusion (SWI) and guarantee the sustainability of
groundwater use (Werner et al., 2013; Ataie-Ashtiani et al.,
2014). In recent years, a significant number of studies have shown
that these optimal management strategies can be derived from
combined simulation-optimization (S/O) schemes (e.g. Kourakos
and Mantoglou, 2009; Ataie-Ashtiani et al., 2014; Ketabchi and
Ataie-Ashtiani, 2015b,c). In S/O schemes, SWI numerical models
can be employed to analyze the effect of various management
alternatives on the coastal aquifer system; and the optimization
algorithm performs a systematic search for improved management
alternatives based on SWI model outputs.

Previous applications of S/O in the context of coastal groundwa-
ter management (CGM) have mostly relied on deterministic SWI
simulations. This simplifying assumption is certainly questionable,
knowing that SWI model outputs are inevitably prone to both epis-
temic and aleatory uncertainty (Carrera et al., 2010; Rajabi and
Ataie-Ashtiani, 2014). The inherent uncertainty in SWI models
may cause significantly different real-world outcomes for a man-
agement strategy, compared to what is initially expected. So a
management strategy that is considered optimal using a determin-
istic SWI model may become non-optimal when uncertainty in the
model outputs is considered. This shortcoming has been recog-
nized by several key review papers in the field of coastal aquifer
S/O (e.g. Sreekanth and Datta, 2015; Ketabchi and Ataie-Ashtiani,
2015b,c; Ketabchi et al., 2016). However, a survey of literature
shows that in practice, uncertainty-based S/O has rarely been con-
sidered in CGM (Sreekanth and Datta, 2014; Ketabchi and Ataie-
Ashtiani, 2015b). The few previously published work on S/O under
uncertainty in coastal groundwater applications are presented in
Table 1. In this table a number of key features of previous work
have been reviewed. As shown in Table 1, uncertainty-based
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CGM studies have been limited to hypothetical examples (e.g. Dhar
and Datta, 2009a,b; Sreekanth and Datta, 2011; Sreekanth et al.,
2016) or simplified real-world cases (e.g. Sreekanth and Datta,
2014, Zekri et al., 2015). All the studies mentioned in Table 1 have
used a particular evolutionary algorithm (EA), namely NSGA-II, for
the optimizations. These studies have considered uncertainty in
hydraulic conductivities, aquifer recharge and pumping rates.

Our survey shows that further investigations are necessary on
several key aspects pertaining to S/O under uncertainty for CGM.
More specifically, there are two important issues that require the
most attention. The first issue is how to solve the computational
challenges resulting from the need to performed massive numbers
of numerical SWI simulations in S/O schemes that consider uncer-
tainty. The second issue is how the management problem is formu-
lated in presence of uncertainty. In the following subsections, these
two issues and the potential strategies for addressing them are
briefly described.

1.1. The computational challenge

The computational challenge of performing optimization under
uncertainty arises from two key issues. First, estimation of the

associated probabilistic objective function(s) or constraints gener-
ally requires the use of numerical methods such as Monte Carlo
simulation (MCS) (Schuëller et al., 2004), which involve large num-
bers of model simulations in order to reach the desired level of
accuracy (Rajabi et al., 2015a). Second, the optimization procedure
itself involves repeated evaluation of the objective function(s) and
constraints in order to identify the optimal solution(s), and so,
many repetitions of MCS are needed (Schuëller and Jensen,
2008). Due to these reasons, it is computationally difficult to
employ groundwater numerical models (which we hereafter refer
to as the ‘‘simulators”) in uncertainty-based S/O even in simple
toy problems (He et al., 2010; Sreekanth, and Datta, 2014). Hence,
in order to make simulation-optimization under uncertainty a
practical tool for real-world groundwater management problems,
it is necessary to find techniques that can substantially reduce
the computational burden (Ketabchi and Ataie-Ashtiani, 2015b).

There are a number of potential strategies for reducing the com-
putational cost of S/O under uncertainty, which include the use of:
(1) efficient optimization techniques, (2) parallelization and grid
computing, (3) efficient Monte Carlo methods, and (4) approxima-
tion techniques in the form of lower-fidelity or response surface
surrogate modeling (Schuëller and Jensen, 2008; Shan and Wang,

Nomenclature

3D three dimensional
ACO ant colony optimization
Alt.MP alternative formulation of management problem
ANN artificial neural networks
CACO continuous ant colony optimization
CDF cumulative distribution function
CGM coastal groundwater management
CLD centered L2 discrepancy
CPU central processing unit
CV coefficient of variation
DoE design of experiment
EA evolutionary algorithm
ESE enhanced stochastic evolutionary
F1, F2 failure events
FITC fully independent training conditional
GMZ groundwater management zone
GP Gaussian process
GPr genetic programming
max maximum
MCMC Markov chain Monte Carlo
MCS Monte Carlo simulation
min minimum
MP management problem
OLHS optimized Latin hypercube sampling
OR optimization run
PC personal computer
PCE polynomial chaos expansion
PI prediction intervals
QoI quantities of interest
RBO reliability-based optimization
RL reliability level
S/O simulation-optimization
SWI seawater intrusion
TSR time saving ratio
UP uncertainty propagation
Ai surface area of the ith GMZ
CSW salinity concentration in seawater
CT a threshold for salinity concentrations
�Ei average groundwater extraction rate of the ith GMZ
Eopti optimized extraction rate of the ith GMZ

Esum total annual groundwater extraction volume
Dð; Þ energy distance between two probability distributions
Dsum sum of energy distances
Dallow
sum allowable sum of energy distances

FðÞ probability distribution
Fj CDF of salinity concentration in the jth observation well
F Z
j CDF of salinity concentration in the jth observation well

in the zero-extraction scenario
GðÞ probability distribution
KL permeability of the lower geological layer
KU permeability of the upper geological layer
NGMZs total number of GMZs
NMC number of MCSs
NMC;ðC>CT Þ number of MCSs resulting in salinity concentrations

above CT

Nno a number of successive generations in CACO
NObs total number of observation wells
Ntot total number of generations in CACO
PF probability of occurrence of a failure event
RNet;i net recharge in the ith GMZ
PIL lower bound of PI
PIU upper bound of PI
PrCT

exd;j the probability of exceedance of salinity concentrations
in the jth observation well from a certain threshold

PrSWI;j probability of SWI occurrence in the jth observation
well

TGP time required to perform a set of calculations using the
GP emulators

TS time required to perform a set of calculations using the
numerical simulator

V variance
X, Xi, Xj model inputs
aL longitudinal dispersivity
aT transverse dispersivity
c design variables
d tolerable probability of failure
h uncertain inputs
l mean
r standard deviation
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