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a b s t r a c t 

Response surface method is often employed in simulation based design and optimization for complex 

products. The sparsity of response surface on the mathematic basis has been explored to accurately rep- 

resent the variation between design variables and performance response with only a few design points, 

which is very beneficial to efficient design optimization. Due to the selected basis, it may lead to a large 

deviation, or under-fitting of the reconstructed response surface since the number of sampling points is 

often smaller than its sparseness. 

In this paper, a quasi-sparse response surface is presented to trade-off the sparsity and variation of 

response surface by introducing coefficient shrinkage regularization and uniformly sampling for the de- 

sign points, which enables more atoms in the basis included to accurately and robustly reconstruct the 

surface. The group of basis atoms which are correlated with sampling points instead of the most corre- 

lated one are all selected to uniform express the sampling points, and the coefficients of basis atoms are 

shrunk to improve the prediction performance of the model. 

Finally, 9 benchmark functions and 1 engineering applications are utilized to demonstrate the signif- 

icance of the presented approach by comparing with other normally used response surface models, The 

results shows that the accuracy and robustness of the reconstructed response surface is superior than 

those of other response surface approaches. 

© 2017 Published by Elsevier Ltd. 

1. Introduction 

In the design process of modern electromechanical products 

and other complicated systems, modeling and simulation technol- 

ogy has been widely employed in simulation analysis and opti- 

mization of decision-making to improve the overall performance 

of the products [1] . In the simulation process of the product, the 

simulation model is often multidisciplinary, non-linear and with 

many other significant features, leading to a long time of simu- 

lation solution, which may take as many as 30–160 h [2] . The re- 

sponse surface simulation optimization method based on computer 

experiment design is an effective method [3] to reduce the time of 

simulation. 

In order to meet different application requirements, the fol- 

lowing response surface models are mainly used at present [2] : 

(1) Polynomial Response Surface (PRS), (2)Multivariate Adaptive 

Regression Splines (MARS), (3) Kriging (Ordinary Kriging (OK) 
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and Blind Kring (BK)), (4) Radial Basis Functions (RBF) and Ex- 

tended Radial Basis Functions (ERBF), (5)Support Vector Regres- 

sion (SVR), (6) Sparsity-promoting Polynomial Response Surface 

(SPPRS). Among them, PRS [4] is a commonly used response sur- 

face model, however, the maximum number of polynomials needs 

to be set, which often results in the problem of under-fitting or 

over-fitting. MARS is used to express complex response surfaces 

by using multi-stage low-order polynomials, and it can process the 

multidimensional response surface by tensor product form [5] , but 

the number of discrete segments and the parametric method are 

still to be further studied. Local interpolation term on the basis of 

PRS is added in Kriging, which improved the under-fitting prob- 

lem of PRS, but it is high in computational complexity and difficult 

to be adapted to global optimization process [6] . RBF, especially 

multi-quadratic RBF is easy to be constructed and can achieve high 

approximation accuracy [7] . SVR can be used to establish the re- 

sponse surface of the structural analysis model and achieves good 

results [8] . Sparseness plays a big role in the construction of re- 

sponse surface. Sparsity and regularization strategy has been em- 

ployed by Huong et al [9] , Liu and Wang [10–13] , Huang [14] to 

construct the surface from point-cloud. The same strategy is ap- 
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plied in SPPRS [15] provided by Fan from our team in 2014 which 

is a new high-fidelity surrogate modeling approach based ‘sparsity- 

promoting’’ regression method. The ‘‘sparsity-promoting’’ regres- 

sion method is proposed exactly aiming to seek such a sparse 

representation with limited sampling points. Numerical experi- 

ments show its performance exceeds surrogate model technologies 

[15] mentioned above, however, its performance is limited in the 

case of the number of sampling points is smaller than the sparse- 

ness of response surface on the mathematic basis. 

We define sparseness s as the minimize number of basis atom 

in selected basis to reconstruct the source model. Because of the 

complexity, many of the models are not sparse enough in specific 

basis functions, which means s > n , where n is the number of sam- 

pling points. In this case, the s sparse basis atoms cannot be se- 

lected completely and accurately from basis dictionary by response 

surface pursuing sparsity. In order to be able to accommodate the 

case of s > n , we propose a quasi-sparse response surface (QSRS) 

model trades off the sparsity and variation of response surface. The 

group of basis atoms which are correlated with sampling points in- 

stead of the most correlated one are all selected to uniform express 

the sampling points. The coefficients of basis atoms are shrunk to 

improve the prediction performance of the model [16] . Elastic net 

regression is employed to achieve above purposes. 

The rest of the paper is organized as follow: in Section 2 , we 

present the QSRS, focusing on elastic net regression and solution 

algorithm; Section 3 gives the simulation test condition; after pre- 

senting and discussing the results of tests in Section 4 , the conclu- 

sion is given. 

2. Quasi-sparse response surface 

In this section, we first propose the model structure of QSRS, 

and then introduce the elastic net regression and uniform design 

sampling method; finally, we give the algorithm process of QSRS. 

2.1. Model structure 

QSRS can be written as a linear model 

ˆ y ( x ) = 

p ∑ 

i =1 

βi ϕ i ( x ) , (1) 

where m is the number of variables, x = [ x 1 ���x m 

] T is a design 

point, { β i } i = 1, 2, ���p are coefficients, { ϕi ( x )} i = 1, 2, ���p are atoms 

from a dictionary, p is the number of atoms. Dictionary is a set 

of basis functions (so-called atoms) such as Legendre polynomial 

functions. Atom is column vector of the basis functions values in 

the design point. We use Legendre polynomials as the atoms of 

dictionary in this paper, and ϕi ( x ) can be defined as 

ϕ i ( x ) = L 
(
x , η( i ) 

)
= 

m ∏ 

j=1 

l j 

(
x j , η

( i ) 
j 

)
, i = 1 , · · · , p 

where η(i ) = [ η(i ) 
1 

· · ·η(i ) 
m 

] T is the exponent vector of ϕi ( x ), L ( x, η( i ) ) 

is a form of Legendre polynomials, and l j ( x j , η
(i ) 
j 

) is the η(i ) 
j 

-order 

univariate Legendre polynomial with respect to x j . 

Given a set of sampling points x = [ x (1) , · · · , x (n ) ] T , x (k ) ∈ 

R 

m , k = 1 , 2 , · · · , n , and the corresponding actual response 

y = [ y (1) , ���, y ( n ) ] T , then the so-called ‘‘design matrix’’ can be de- 

fined as 

� = 

⎡ 

⎢ ⎣ 

ϕ 1 

(
x ( 1 ) 

)
· · · ϕ p 

(
x ( 1 ) 

)
. . . 

. . . 
. . . 

ϕ 1 

(
x ( n ) 

)
· · · ϕ p ( x ( n ) 

⎤ 

⎥ ⎦ 

. 

The matrix form of Eq. (1) can be written as 

ˆ y ( x ) = �β. 

The work QSRS fitting the source model is to solve the problem 

β = arg min 

β

∥∥y − �β
∥∥

2 
(2) 

If we want to estimate a sparsity response surface, we should 

add the constraint to Eq. (2) : 

s.t. 
∥∥β

∥∥
0 

= s. 

where s is the sparseness of source model in Legendre polynomial 

basis functions, and ‖ β‖ 0 means the nonzero number of coeffi- 

cients β. Solving Eq. (2) with the constraint ( � 0 norm) is a NP hard 

problem, especially s is a unknown variable. The general method is 

relaxing the sparse constraint condition to � 1 norm or � 2 norm. 

A good model should be good at both prediction and interpre- 

tation. It is achieved by variable selection and coefficient shrink- 

age in statistical regression field which is just the same as the lin- 

ear model in the response surface. There are a lot of regression 

methods to approach the purpose such as elastic net regression, 

least absolute shrinkage and selection operator (LASSO) and ridge 

regression. LASSO method, which can provide both variable selec- 

tion and coefficient shrinkage functions, can be used to generate 

a sparse model, however, the model performance is limited in the 

number of atoms selected in the case of s > n . As a continuous 

shrinkage method, ridge regression achieves its better prediction 

performance through a bias-variance trade-off [17] . However, the 

model ridge regression produced is not sparsity, for ridge regres- 

sion always keeps all variables in the model. Elastic net regression 

combines the characteristic of both LASSO and ridge regression. 

We use elastic net regression to construct a quasi-sparsity response 

surface model in this paper. 

2.2. Elastic net regression 

2.2.1. Definition 

Consider the cost function 

L ( λ1 , λ2 , β) = 

∥∥y − �β
∥∥2 + λ1 

∥∥β
∥∥

1 
+ λ2 

∥∥β
∥∥2 

2 
, (3) 

where 

‖ 

β‖ 1 = 

p ∑ 

j=1 

∣∣β j 

∣∣, 
‖ 

β‖ 

2 
2 = 

p ∑ 

j=1 

β2 
j . 

The Elastic net estimator ˆ βis the minimize of Eq. (3) : 

ˆ β = argmin 

β
{ L ( λ1 , λ2 , β) } . (4) 

Let α = λ2 /( λ1 + λ2 ), we can rewrite Eq. (3) as 

L ( λ, α, β) = ‖ 

y − �β‖ 

2 + λ
(
( 1 − α) ‖ 

β‖ 1 + α‖ 

β‖ 

2 
2 

)
. (5) 

The parameter α determines the mix of the penalties, and is 

often pre-chosen on qualitative grounds. It encourages highly cor- 

related features to be averaged, while the first regularization pa- 

rameter (1 −α) encourages a sparse solution in the coefficients of 

these averaged features. 

The elastic net penalty function λ( ( 1 − α) ‖ β‖ 1 + α‖ β‖ 2 2 ) is a 

convex combination of the LASSO and ridge penalty. When α = 1, 

it becomes simple ridge regression. For all α ∈ [0, 1), due to the 

lack of first derivative, the elastic net penalty function is singular 

at 0 and it is strictly convex for all α > 0, thus having the char- 

acteristics of both the LASSO and ridge regression. Especially when 

α = 0, it becomes LASSO regression and it is convex but not strictly 

convex. 
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