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a b s t r a c t

The (bi)simulation relation has recently been attracting growing interest in the study of nonlinear control
systems, in the hope that through such a relation, the behaviors and properties of a nonlinear system
can be inferred from those of another system which is easier to handle. In this paper, we consider the
propagation of the property of nonlinear norm-observability through a simulation relation. Given two
control systems that are related by a graph simulation relation, we derive conditions under which the
norm-observability of the simulating system implies the norm-observability of the simulated system.
The obtained results are given in terms of set-valued functions. Several examples are included to illustrate
various applications of our results.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In many cases, high fidelity models to accurately represent a
dynamical system may be too intricate for use in system analysis
and control design. It is therefore desirable to have a methodology
that relates ‘‘complex’’ models (for example, models with high
nonlinearity) to ‘‘simple’’ ones (for example, systems being linear
ormildly nonlinear),while preserving certain properties of interest
relevant for analysis or synthesis. In the past decades, approaches
based on (bi)simulation relations have been introduced in the
study of controlled dynamical systems, exploring the possibility of
connecting a systemwith another systemwhose behaviors and/or
properties are easier to understand (see, e.g., [1–4]). (Bi)simulation
relations are natural and important objects in control systems
theory. Loosely speaking, a simulation between two dynamical
systems defines a relation with the property that every trajectory
of the first system can be associated with a trajectory of the
second system. If the association is bidirectional, then one obtains
a bisimulation relation between the two dynamical systems. The
notions of simulation and bisimulation relations provide a poten-
tially useful tool for classifying linear and nonlinear systems [2,4].
They also have interesting connections with other fundamental
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concepts in nonlinear systems theory such as controlled invariance
[1,3,5] and feedback transformations [6]. As already stated, an im-
portant motivation for studying (bi)simulation relations is to hope
to reason about certain properties across related systems. Some
pertinent work includes studies on reasoning about controllability
of (C-related) linear systems [7], reasoning about stability proper-
ties of hybrid systems [8], and the propagation of controllability
properties through a simulation relation for nonlinear systems [9].

Observability is certainly one of the key concepts in control
theory. In the context of nonlinear systems, various observability
definitions have been proposed in the literature in order to capture
the relationship between the state, the output, and the input of
a system (see, e.g., [10]). The notion of norm-observability was
introduced in [11] and [12]. Rather than inferring the precise value
of the state, the norm-observability properties describe the ability
to determine an upper bound on the norm of the state using the
output and the input. As pointed out in [12], such observability
properties have close ties to the important concept of input–
output-to-state stability in nonlinear systems analysis [13]. The
problem of determining whether a system is norm-observable,
besides being interesting in itself, is particularly relevant in the
context of switched nonlinear systems, as it is strongly related
to the stability and supervisory control of the systems (see,
e.g., [12,14,15]).

In this paper, we focus on the notion of norm-observability and
examine the extent to which the norm-observability properties
of nonlinear systems are preserved by simulation relations. More
specifically, given two control systems that are connected by a
simulation relation, our main objective is to determine conditions
that allow us to propagate the norm-observability properties from
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the simulating system to the simulated system, suggesting that an
observability analysis of the simulating system can shed light on
the norm-observability properties of the simulated system. Cur-
rently, the main tool used to test norm-observability for nonlinear
systems in the literature, to our knowledge, is the Lyapunov-like
method [12]. We demonstrate by example that our results offer
a new possibility for the norm-observability analysis of nonlin-
ear systems. The notion of simulation relation embraces many
different types, such as exact simulation relations, approximate
simulation relations [16–19], alternating simulation relations [20,
Chapters 4.3 and 9.2], contractive simulation relations [21], and
graph simulation relations [6,9]. Depending on the context, some
relations may be more appropriate to use than others. The sim-
ulation relations considered in the paper are the so-called graph
simulation relations. As will be seen, such relations are the right
tool to use to reason about nonlinear norm-observability.

Organization: The notions of norm-observability and graph sim-
ulation are presented in Section 2. Main results, establishing the
conditions that propagate norm-observability, are proposed in Sec-
tion 3. Then, several illustrative examples are given in Section 4,
and a brief conclusion is drawn in the final section.

Notation and terminology:We use |·| to denote the standard Eu-
clidean norm, and ∥z∥I the essential supremum norm of a function
z(t) on an interval I . We write Bn(r) for the closed ball in Rn with
center 0 and radius r > 0. For a function g : A → B, the graph of g ,
denoted by Graph(g), is defined as Graph(g) = {(a, g(a)) : a ∈ A}.
Let X and Y be finite-dimensional Euclidean spaces. A set-valued
function F from X to Y is a function that associates with any x ∈ X a
subset F (x) of Y . If K ⊆ X and if F is a set-valued function from X to
Y , the image of the setK under F is given by F (K ) = ∪x∈K F (x). A set-
valued function F is said to be bounded if the image of any bounded
set under F is bounded. We say that F is upper semicontinuous at
x ∈ X if for any openN containing F (x) there exists a neighborhood
M of x such that F (M) ⊆ N .

2. Preliminaries

2.1. Norm-observability notions

To make the paper reasonably self-contained, we briefly recall
the definitions of norm-observability introduced in [12]. Consider
the following system

Σ : ẋ = f (x, u), y = h(x). (1)

We assume that (see, e.g., [10]) the function f : Rn
× Rm

→ Rn is
so that f (·, u) is of class C1 for each fixed u ∈ Rm, f and ∂ f /∂x are
continuous on Rn

× Rm, and f (0, 0) = 0, and that h : Rn
→ Rp is

continuous with h(0) = 0. By an input or control for (1), we mean
ameasurable function u(·) : R → Rm which is essentially compact
valued on compact intervals, i.e., for every compact interval I ⊆ R
there exists a compact subset K ⊆ Rm such that u(t) ∈ K for
almost all t ∈ I [6,9]. We denote by Um

cpt the set of all inputs. For
any u(·) ∈ Um

cpt and any x0 ∈ Rn, there exists a unique maximally
extended solution of the initial value problem

ẋ = f (x, u(t)), x(0) = x0.

Such a solution is defined on some open interval (tmin
x0,u, t

max
x0,u ) con-

taining 0. We assume that the system Σ has the unboundedness
observability property [22],whichmeans that for every initial state
x0 and input u such that tmax

x0,u < ∞, the corresponding output
becomes unbounded as t → tmax

x0,u . We recall that a function α :

[0,∞) → [0,∞) is said to be of classK∞ if it is continuous, strictly
increasing, unbounded, and α(0) = 0.

Definition 1 ([12]).

(a) We say that the systemΣ is small-time norm-observable if for
every τ > 0, there exist K∞ functions γ and χ such that for
every x0 ∈ Rn and for every u ∈ Um

cpt, it holds that

|x0| ≤ γ (∥y∥[0,τ ]) + χ (∥u∥[0,τ ]). (2)

(b) We say that Σ is large-time norm-observable if there exist
τ > 0 and two class K∞ functions γ and χ such that (2)
holds for any x0 ∈ Rn and any input u ∈ Um

cpt.

Remark1. Roughly speaking, norm-observability imposes a bound
on the norm of the initial state in terms of the norms of the
output and the input. The principal difference between small-time
norm-observability and large-time norm-observability is that the
former requires the inequality (2) to hold for arbitrary τ , while the
latter requires (2) to hold for at least one τ > 0. It is clear from
the definition that small-time norm-observability implies large-
time norm-observability. Note that the converse is, in general, not
true. However, for linear systems these two notions are known
to be equivalent and are both equivalent to the usual concept of
observability [12].

Remark 2. Other equivalent definitions of small-time and large-
time norm-observability can be achieved under the assumption of
the unboundedness observability property for the system Σ and
its reversed-time system; see [12] for more information.

2.2. Graph simulation relations

Consider the systemΣ together with another system

Σ̃ : ż = f̃ (z, v), w = h̃(z). (3)

Here, the function f̃ : Rñ
× Rm̃

→ Rñ is such that f̃ (·, v) is a C1

function for each fixed v ∈ Rm̃, f̃ and ∂ f̃ /∂z are continuous on
Rñ

× Rm̃, and f̃ (0, 0) = 0; and h̃ : Rñ
→ Rp̃ is continuous and

vanishes at 0. The following definition is patterned after that given
in [6] and [9].

Definition 2. Given Σ and Σ̃ , a pair of relations (S,R), where
S ⊆ Rn

×Rñ andR ⊆ Rp
×Rp̃, is called a compact graph simulation

relation ofΣ by Σ̃ if the following conditions are satisfied:

(a) The relationS is the graph of a C2 functionΦ : Rn
→ Rñ with

the following property: given any x ∈ Rn and any u ∈ Rm,
there exist open neighborhoods X ⊆ Rn of x and U ⊆ Rm of
u, and a compact set V ⊆ Rm̃ such that for every x′

∈ X and
u′

∈ U there is some v′
∈ V such that

∂Φ

∂x
(x)

⏐⏐⏐
x=x′

f (x′, u′) = f̃ (Φ(x′), v′).

(b) For every x ∈ Rn we have (h(x), h̃(Φ(x))) ∈ R.

We call Σ̃ the simulating system andΣ the simulated system.

Note that this definition is slightly different from the one of [6]
and [9] in that in condition (b)we only require the outputs h(x) and
h̃(Φ(x)) to be related by a relation R, rather than identical.

Remark 3. Intuitively, a simulation should specify that every
trajectory of the simulated (or original) systemcanbematched by a
trajectory of the simulating (or abstract) system. Certainly, one can
define the concept of simulation relation by directly using this idea.
But, in practice, such a definition may be inconvenient to check,
especially for nonlinear systems, since it requires knowledge of the
system trajectories. On the other hand, conditions (a) and (b) of
Definition 2 are relatively easy to verify and suffice to guarantee
that the simulating system has the capability of mimicking the
behavior of the simulated system [6].
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