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1. INTRODUCTION

When dealing with nonlinear systems, it is often of capital
importance to be able to predict the evolution of the state
for uncertain initial condition. A practical approach to
this problem is the use of systematic simulation, which
consist ideally in checking the behaviour of the system with
respect to all possible initial conditions; but this is strictly
impossible if initial conditions are assumed to belong to a
dense set, leading to approaches based on random tests or
Monte Carlo methods (Binder [1986]). Other approaches
have also been investigated, for example based on random
exploration like in Donzé and Maler [2007] or sensitivity
analysis as in Dang et al. [2008]. All of these methods alas
suffer of the shortcoming of being a sort of “statistical”
validation, in the sense that they do not offer a hard bound
on the evolution of the system, if not for a dramatically
increasing computational complexity. Another approach
consists in evaluating the effect of the initial condition
with respect to an output index, which gives an idea of
such effects but does not establish precise bounds on each
state variable (Tierno et al. [1997], Jönsson [2002]).

In this article we present a radically different approach to
the problem, based on the so called “robust simulation” or
simulation of sets (Kantner and Doyle [1996], Kishida and
Braatz [2011], Topcu et al. [2008], Calafiore [2003], Ben-
Talha et al. [(in press]), which offers instead mathemat-
ically guaranteed bounds for the evolution of dynamical
systems. The specific method developed in this paper fo-
cuses on a class of discrete-time systems, and it is based on
a relaxation of polynomial problems (Parrilo [2003]), which
leads to efficiently solvable convex optimisation problems
in the form of linear matrix inequalities (LMIs, Boyd et al.
[1994]). This approach can be considered “safe”, as the
evolution of all the possible trajectories of the state are
hard bounded, but on the other hand it is conservative, i.e.

the bounds are not necessarily tight. Robust simulation is
a problem that shares several similarities with many works
on computations on invariant sets Korda et al. [2014],
reachability Shia et al. [2014],Wang et al. [2013] and search
for regions of attractions Henrion and Korda [2014]. The
goal of this paper is to find the envelope containing the
state at each time instant, and not to understand whether
it is stable or whether it will eventually converge to a set.

The paper is organised as follows. Section 2 contains
the preliminaries and the problem formulation. The main
theoretical result can then be found in Section 3, in the
form of a theorem with a corollary. This result is then
applied to three examples in Section 4. Finally, conclusions
are drawn in Section 5.

2. PRELIMINARIES

2.1 Notation

We denote by N the set of natural numbers, by R the
set of real numbers and by Rn×m the set of real n×m
matrices. Let C be the set of complex numbers, and j the
imaginary unit. A⊤ indicates the transpose of a matrix
A, In is the identity matrix of size n, and 0n×m is a
matrix of zeros of size n × m. The notation A � 0
(A � 0) indicates that all the eigenvalues of the symmetric
matrix A are positive (negative) or equal to zero, whereas
A ≻ 0 (A ≺ 0) indicates that all such eigenvalues are

strictly positive (negative). The symbol

(

n

k

)

indicates the

binomial coefficient, for which we have
(

n

k

)

=
n!

k!(n− k)!
.

We also define E(P, c) as the ellipsoid of dimension n with
matrix P ∈ Rn×n, P = P⊤ ≻ 0 and centered in c ∈ Rn,
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Lyon, F-69621 Villeurbanne, France
(e-mail: paolo.massioni@insa-lyon.fr)

∗∗ Laboratoire Ampère, UMR CNRS 5005, Ecole Centrale de Lyon,
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i.e. E(P, c) = {x ∈ R
n | (x − c)⊤P−1(x − c) � 1}. At last,

we employ the symbol ∗ to complete symmetric matrix
expressions avoiding repetitions.

2.2 Problem formulation

We consider a discrete-time dynamical system of order n
whose evolution is described by the equation

gm(x(k))x(k + 1) = fm(x(k)) (1)

where k ∈ N is the discrete time variable, x ∈ Rn

is the state vector, gm is scalar polynomial function of
degree not greater than m ∈ N, and fm(x(k)) ∈ Rn is
a vector-valued polynomial function of degree not greater
than m. We suppose that the initial condition x(0) is not
exactly known, but it is bound to belong to an ellipsoid
E(P (0), c(0)) , i.e.

(x(0)− c(0))⊤P (0)−1(x(0)− c(0)) � 1. (2)

The problem on which this article focuses is to find the
smallest ellipsoid E(P (N), c(N)) that, for all the valid
initial conditions, bounds the state at a time N > 0, i.e.
such as

(x(N)− c(N))⊤P (N)−1(x(N)− c(N)) � 1. (3)

This problem can be decomposed into the iteration of an
elementary problem on a single time step, i.e. finding the
smallest E(P (k+1), c(k+1)) for a given x ∈ E(P (k), c(k)).

3. MAIN RESULT

As stated, gm and fm are polynomials in the state variable
x(k), with x = [x1, x2, . . . xn]

⊤ (dropping the dependency
from the time variable in order to simplify the notation).
As we are going to deal with polynomials up to degree
m, we define also the vector χ ∈ Rρ which contains all
the possible monomials obtainable from x from degree
0 up to m (for example, if n = 2, m = 2, then χ =
[x1, x2, x

2

1
, x1x2, x

2

2
, 1]⊤). We have that

ρ =

(

n+m

n

)

. (4)

In this way, any polynomial in the variables of x up to
degree m can be formulated as a linear function of χ; so
namely we have

fm(x(k)) = F⊤χ(k), gm(x(k)) = G⊤χ(k) (5)

with F ∈ Rρ×n, G ∈ Rρ. Moreover, it is also possible to
express polynomials up to degree 2m as a quadratic form
with respect to χ, i.e. p(x) = χ⊤Pχ, with P = P⊤ ∈ Rρ×ρ.
As reported in the literature related to sum of squares
problems (Parrilo [2003]), this quadratic expression of a
polynomial is not unique, due to the fact that different
products of monomials can yield the same result, for
example x2

1
is either x2

1
times 1 or x1 times x1. This

implies that there exist linearly independent slack matrices
Qk = Q⊤

k ∈ Rρ×ρ, with k = 1, . . . , ι such as χ⊤Qkχ = 0.
The number of such matrices is

ι =
1

2

(

(

m+ n

m

)2

+

(

m+ n

m

)

)

−

(

n+ 2m

2m

)

. (6)

This implies that, for a given P , a polynomial of degree
2m or less can be expressed as

p(x) = χ⊤

(

P +
ι

∑

k=1

ψkQk

)

χ (7)

for any ψ ∈ R
ι, ψ = [ψ1, ψ2, . . . ψι]

⊤.

Before formulating our main result, we report two lemmas
which will be useful for its proof.
Lemma 1 (S-procedure (Boyd et al. [1994])). Consider
the vector z ∈ Rr, and matrices X = X⊤ ∈ Rr×r,
Yk = Y ⊤

k ∈ Rr×r for k = 1, . . . , ν. Let τ ∈ Rν , τ =
[τ1, τ2, . . . τν ]

⊤. Then it holds that X −
∑ν

k=1
τkYk �

0, τi � 0 ⇒ z⊤Xz � 0, ∀z|zTY z � 0, k = 1, . . . , ν.
Lemma 2 (Schur complement (Boyd et al. [1994])).
Consider three matrices A = A⊤ ≻ 0, B, C = C⊤ with
compatible dimensions. Then

[

A B

B⊤ C

]

� 0 ⇔ C −B⊤A−1B � 0. (8)

We are ready now to formulate the following theorem,
which basically yields a practical solution for the problem
in 2.2 in its step-by-step formulation.
Theorem 3. Consider the dynamical system in (1). If
x(k) is such that (x(k) − c(k))⊤P (k)−1(x(k) − c(k)) � 1
is satisfied, then (x(k + 1) − c(k + 1))⊤P (k + 1)−1(x(k +
1) − c(k + 1)) � 1 is true under (1) if the following two
inequalities hold:

[

GG⊤ −Θ+
∑ι

k=1
ψkQk F −Gc(k + 1)⊤

∗ P (k + 1)

]

� 0 (9)

Ω +
ι

∑

k=1

φkQk � 0 (10)

for some values of

• ψ ∈ Rι, ψ = [ψ1, ψ2, . . . ψι]
⊤;

• φ ∈ Rι, φ = [φ1, φ2, . . . φι]
⊤;

• Ω = Ω⊤ ∈ Rρ×ρ is such as χ⊤Ωχ is of degree 2m−2,

where

• Qk = Q⊤

k ∈ R
ρ×ρ satisfies χ⊤Qkχ = 0 for k =

1, . . . , ι;
• Θ = Θ⊤ ∈ Rρ×ρ is such as

χ⊤Θχ = (χ⊤Ωχ)
(

1− (x− c(k))⊤P (k)−1(x− c(k))
)

.

Proof. We start by rewriting the expression (x(k + 1) −
c(k+1))⊤P (k+1)−1(x(k+1)− c(k+1)) � 1; multiplying
both sides by gm(x(k))2 = χ(k)⊤GG⊤χ(k) and replacing
gm(x(k))x(k + 1) with fm(x(k)) according to (1), we
get χ(k)⊤GG⊤χ(k)− (F⊤χ(k)− c(k+1)G⊤χ(k))⊤P (k+
1)−1(F⊤χ(k)− c(k + 1)G⊤χ(k))⊤ � 0.

By using the Schur complement (Lemma 2), thanks to the
fact that P (k + 1) ≻ 0, this is equivalent to

∗

[

GG⊤+
∑ι

k=1
ψkQk F−Gc(k+1)⊤

∗ P (k+1)

][

χ(k)0ρ×n

0n×1 In

]

�0. (11)

We would like to have this last expression verified (imply-
ing that x(k+1) is inside the ellipsoid E(P (k+1), c(k+1)))
when x(k) belongs to another ellipsoid, i.e. when 1−(x(k)−
c(k))⊤P (k)−1(x(k) − c(k)) � 0. For this we can use the
S-procedure (Lemma 1), in the case of r = 1, and we
decide to employ an x(k)-varying multiplier τ(x) � 0;
namely we choose τ(x) as a polynomial of degree 2m− 2
in x(k), i.e. τ(x) = χ⊤Ωχ, and in this way τ(x)(1 −
(x(k) − c(k))⊤P (k)−1(x(k) − c(k)) is of degree 2m and
can be expressed as χ⊤Θχ. The condition τ(x) = χ⊤(Ω+
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i.e. E(P, c) = {x ∈ R
n | (x − c)⊤P−1(x − c) � 1}. At last,

we employ the symbol ∗ to complete symmetric matrix
expressions avoiding repetitions.

2.2 Problem formulation

We consider a discrete-time dynamical system of order n
whose evolution is described by the equation

gm(x(k))x(k + 1) = fm(x(k)) (1)

where k ∈ N is the discrete time variable, x ∈ Rn

is the state vector, gm is scalar polynomial function of
degree not greater than m ∈ N, and fm(x(k)) ∈ Rn is
a vector-valued polynomial function of degree not greater
than m. We suppose that the initial condition x(0) is not
exactly known, but it is bound to belong to an ellipsoid
E(P (0), c(0)) , i.e.

(x(0)− c(0))⊤P (0)−1(x(0)− c(0)) � 1. (2)

The problem on which this article focuses is to find the
smallest ellipsoid E(P (N), c(N)) that, for all the valid
initial conditions, bounds the state at a time N > 0, i.e.
such as

(x(N)− c(N))⊤P (N)−1(x(N)− c(N)) � 1. (3)

This problem can be decomposed into the iteration of an
elementary problem on a single time step, i.e. finding the
smallest E(P (k+1), c(k+1)) for a given x ∈ E(P (k), c(k)).

3. MAIN RESULT

As stated, gm and fm are polynomials in the state variable
x(k), with x = [x1, x2, . . . xn]

⊤ (dropping the dependency
from the time variable in order to simplify the notation).
As we are going to deal with polynomials up to degree
m, we define also the vector χ ∈ Rρ which contains all
the possible monomials obtainable from x from degree
0 up to m (for example, if n = 2, m = 2, then χ =
[x1, x2, x

2

1
, x1x2, x

2

2
, 1]⊤). We have that

ρ =

(

n+m

n

)

. (4)

In this way, any polynomial in the variables of x up to
degree m can be formulated as a linear function of χ; so
namely we have

fm(x(k)) = F⊤χ(k), gm(x(k)) = G⊤χ(k) (5)

with F ∈ Rρ×n, G ∈ Rρ. Moreover, it is also possible to
express polynomials up to degree 2m as a quadratic form
with respect to χ, i.e. p(x) = χ⊤Pχ, with P = P⊤ ∈ Rρ×ρ.
As reported in the literature related to sum of squares
problems (Parrilo [2003]), this quadratic expression of a
polynomial is not unique, due to the fact that different
products of monomials can yield the same result, for
example x2

1
is either x2

1
times 1 or x1 times x1. This

implies that there exist linearly independent slack matrices
Qk = Q⊤

k ∈ Rρ×ρ, with k = 1, . . . , ι such as χ⊤Qkχ = 0.
The number of such matrices is

ι =
1

2

(

(

m+ n

m

)2

+

(

m+ n

m

)

)

−

(

n+ 2m

2m

)

. (6)

This implies that, for a given P , a polynomial of degree
2m or less can be expressed as

p(x) = χ⊤

(

P +
ι

∑

k=1

ψkQk

)

χ (7)

for any ψ ∈ R
ι, ψ = [ψ1, ψ2, . . . ψι]

⊤.

Before formulating our main result, we report two lemmas
which will be useful for its proof.
Lemma 1 (S-procedure (Boyd et al. [1994])). Consider
the vector z ∈ Rr, and matrices X = X⊤ ∈ Rr×r,
Yk = Y ⊤

k ∈ Rr×r for k = 1, . . . , ν. Let τ ∈ Rν , τ =
[τ1, τ2, . . . τν ]

⊤. Then it holds that X −
∑ν

k=1
τkYk �

0, τi � 0 ⇒ z⊤Xz � 0, ∀z|zTY z � 0, k = 1, . . . , ν.
Lemma 2 (Schur complement (Boyd et al. [1994])).
Consider three matrices A = A⊤ ≻ 0, B, C = C⊤ with
compatible dimensions. Then

[

A B

B⊤ C

]

� 0 ⇔ C −B⊤A−1B � 0. (8)

We are ready now to formulate the following theorem,
which basically yields a practical solution for the problem
in 2.2 in its step-by-step formulation.
Theorem 3. Consider the dynamical system in (1). If
x(k) is such that (x(k) − c(k))⊤P (k)−1(x(k) − c(k)) � 1
is satisfied, then (x(k + 1) − c(k + 1))⊤P (k + 1)−1(x(k +
1) − c(k + 1)) � 1 is true under (1) if the following two
inequalities hold:

[

GG⊤ −Θ+
∑ι

k=1
ψkQk F −Gc(k + 1)⊤

∗ P (k + 1)

]

� 0 (9)

Ω +
ι

∑

k=1

φkQk � 0 (10)

for some values of

• ψ ∈ Rι, ψ = [ψ1, ψ2, . . . ψι]
⊤;

• φ ∈ Rι, φ = [φ1, φ2, . . . φι]
⊤;

• Ω = Ω⊤ ∈ Rρ×ρ is such as χ⊤Ωχ is of degree 2m−2,

where

• Qk = Q⊤

k ∈ R
ρ×ρ satisfies χ⊤Qkχ = 0 for k =

1, . . . , ι;
• Θ = Θ⊤ ∈ Rρ×ρ is such as

χ⊤Θχ = (χ⊤Ωχ)
(

1− (x− c(k))⊤P (k)−1(x− c(k))
)

.

Proof. We start by rewriting the expression (x(k + 1) −
c(k+1))⊤P (k+1)−1(x(k+1)− c(k+1)) � 1; multiplying
both sides by gm(x(k))2 = χ(k)⊤GG⊤χ(k) and replacing
gm(x(k))x(k + 1) with fm(x(k)) according to (1), we
get χ(k)⊤GG⊤χ(k)− (F⊤χ(k)− c(k+1)G⊤χ(k))⊤P (k+
1)−1(F⊤χ(k)− c(k + 1)G⊤χ(k))⊤ � 0.

By using the Schur complement (Lemma 2), thanks to the
fact that P (k + 1) ≻ 0, this is equivalent to

∗

[

GG⊤+
∑ι

k=1
ψkQk F−Gc(k+1)⊤

∗ P (k+1)

][

χ(k)0ρ×n

0n×1 In

]

�0. (11)

We would like to have this last expression verified (imply-
ing that x(k+1) is inside the ellipsoid E(P (k+1), c(k+1)))
when x(k) belongs to another ellipsoid, i.e. when 1−(x(k)−
c(k))⊤P (k)−1(x(k) − c(k)) � 0. For this we can use the
S-procedure (Lemma 1), in the case of r = 1, and we
decide to employ an x(k)-varying multiplier τ(x) � 0;
namely we choose τ(x) as a polynomial of degree 2m− 2
in x(k), i.e. τ(x) = χ⊤Ωχ, and in this way τ(x)(1 −
(x(k) − c(k))⊤P (k)−1(x(k) − c(k)) is of degree 2m and
can be expressed as χ⊤Θχ. The condition τ(x) = χ⊤(Ω+
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