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a b s t r a c t

Managing socio-ecological systems is a challenge wrought by competing societal objectives, deep un-
certainties, and potentially irreversible tipping points. A classic, didactic example is the shallow lake
problem in which a hypothetical town situated on a lake must develop pollution control strategies to
maximize its economic benefits while minimizing the probability of the lake crossing a critical phos-
phorus (P) threshold, above which it irreversibly transitions into a eutrophic state. Here, we explore the
use of direct policy search (DPS) to design robust pollution control rules for the town that account for
deeply uncertain system characteristics and conflicting objectives. The closed loop control formulation of
DPS improves the quality and robustness of key management tradeoffs, while dramatically reducing the
computational complexity of solving the multi-objective pollution control problem relative to open loop
control strategies. These insights suggest DPS is a promising tool for managing socio-ecological systems
with deeply uncertain tipping points.

© 2017 Elsevier Ltd. All rights reserved.

Software and data availability

Description and Availability The Lake Problem optimization
code, MORDM re-evaluation
code, and best final reference
sets are available on Github at
https://github.com/julianneq/
Lake_Problem_DPS. The
optimization and hypervolume
calculations can be replicated
using the software code
available for the Borg MOEA
(http://borgmoea.org/),
pareto.py (https://github.com/
matthewjwoodruff/pareto.py)
and the MOEA framework
(http://moeaframework.org/)

Developer The simulation code was adapted by Julianne
Quinn from code developed by Riddhi Singh with
adaptations by Tori Ward, Dave Hadka and Jon
Herman

Funding Source Development of the code was partially
supported by the National Science
Foundation, through the Network for
Sustainable Climate Risk Management
(SCRiM) under NSF cooperative agreement
GEO-1240507 as well as the Penn State
Center for Climate Risk Management

Source Language The optimization code is written in Cþþ
and the re-evaluation code in Python

License GNU Lesser General Public License, Version 3

1. Introduction

As economic development continues globally, severe ecological
consequences of human actions are manifesting themselves in
many forms. Altered nutrient cycling, shifting biomes, and
decreased biodiversity are just a few examples of the repercussions
of anthropogenic activities (Parry, 2007). More responsible socio-
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ecological management will require balancing conflicting objec-
tives, some of which exhibit uncertain and precarious threshold
behavior (e.g., Werners et al., 2013; Keller et al., 2008). For example,
we are currently balancing a severe tradeoff between increasing
energy production using fossil fuels and avoiding potentially irre-
versible ecological damages from crossing a threshold atmospheric
CO2 concentration (Solomon et al., 2009). In fact, Lenton et al.
(2008) highlight eight components of the Earth System that could
reach catastrophic tipping points as a result of global warming,
with the areal extent of Artic summer sea-ice and the Greenland ice
sheet facing the most imminent threat.

In environmental systems with thresholds, balancing conflicts
in societal values or objectives is further complicated by severe
uncertainties associated with identifying thresholds as well as the
consequences of crossing them (Lenton, 2013; Keller & McInerney,
2008). These uncertainties are often considered “deep” or Knigh-
tian uncertainties, meaning planners cannot agree on prior prob-
ability density functions to describe the parameters of the system
model, or even on the model itself (Lempert & Collins, 2007;
Knight, 1921). In these cases, it is desirable to find robust man-
agement plans that perform well across a broad range of possible
system conditions (Herman et al., 2015; Kwakkel et al., 2016).

Since its seminal inception (Bankes, 1993; Lempert et al., 2002,
2010; Walker et al., 2003), the field of decision making under
deep uncertainty has emphasized a transition from classical “pre-
dict then act” risk management frameworks to exploratory
modeling frameworks (e.g., see Dessai et al., 2009). These methods
move beyond planning for a single expected future and instead
emphasize investigating the response of systemmanagement plans
to a wide range of deeply uncertain states-of-the-world (SOWs) in
order to discover robust actions for avoiding unacceptable out-
comes (Bryant & Lempert, 2010; Lempert et al., 2006; Hall et al.,
2012). In their recent review, Herman et al. (2015) highlight the
rapid growth in new methodologies and applications of decision
analysis frameworks focused on robustness or deep uncertainty,
such as robust decision making (RDM) (Lempert et al., 2006), dy-
namic adaptive policy pathways (Haasnoot et al., 2013), many-
objective robust decision making (MORDM) (Kasprzyk et al.,
2013), and decision scaling (Brown et al., 2012). Despite the
growing diversity of robustness-focused frameworks, the taxon-
omy of methods presented by Herman et al. (2015) emphasizes the
commonalities between them and the importance of bridging their
capabilities to advance the field. These approaches share four core
methodological components: (1) eliciting or searching for alter-
native management actions, (2) using exploratory modeling to
broadly sample possible SOWs that could impact the performance
of alternative policies or actions, (3) eliciting robustness measures
that distinguish SOWs of concern, and (4) potentially using sensi-
tivity analysis to clarify the key factors that most strongly influence
robustness for subsequent monitoring (Herman et al., 2015).

This study advances the MORDM framework (Kasprzyk et al.,
2013) with a specific focus on two technical contributions: (1)
demonstrating the value and use of direct policy search (DPS)
(Rosenstein & Barto, 2001) for identifying adaptive robust opera-
tional control strategies for socio-ecological systems and (2)
demonstrating hownonlinear environmental thresholds, or tipping
points, pose fundamental challenges for balancing economic ben-
efits and their consequent risks to socio-ecological systems. As
initially developed by Kasprzyk et al. (2013), the MORDM frame-
work focuses on aiding decision makers and stakeholders in
learning how to frame complex, ill-defined environmental plan-
ning problems and in discovering robust decisions that perform
well across a broad array of possible SOWs. A distinguishing feature
of MORDM relative to other frameworks is its use of many-
objective evolutionary optimization to identify approximately

Pareto optimal management decisions. Pareto optimal, or non-
dominated, decisions represent those management actions for
which improvement in one objective is only possible with
degrading performance in one or more other objectives (Pareto,
1896). These solutions are first discovered through multi-
objective optimization to one's best estimate of the true SOW.
The solutions are then re-evaluated in alternative SOWs to deter-
mine how robust they are to uncertainties in system parameters. At
its core, the MORDM framework provides a posteriori decision
support, meaning it first presents explicit representations of key
system tradeoffs and robustness challenges and then elicits stake-
holder preferences in selecting management actions (i.e., generate
first, choose later, as classified by Cohon & Marks (1975)).

In this study, we demonstrate the value of exploiting DPS in the
MORDM framework using the classical shallow lake problem
(Carpenter et al., 1999). In this didactic example, a hypothetical
town situated on a lake attempts to balance the economic benefits
it receives from discharging phosphorus (P) into the lake with the
environmental costs of irreversibly tipping the lake into a eutrophic
state. The behavior of this stylized model of lake eutrophication is
representative of many socio-ecological systems with tipping
points, such as harvested fish populations, grasslands consumed by
cattle on rangelands, and global carbon cycle dynamics (Carpenter
et al., 2015; Anderies et al., 2013). Early work on the lake problem
(e.g., Carpenter et al., 1999; Lempert and Collins, 2007) has focused
on optimizing the town's pollution control policy to maximize the
expected net present value of a utility function which rewards
economic benefits and penalizes pollution using a monetary valu-
ation of displaced ecological benefits. Collapsing these objectives
into a single expected utility function poses several problems. First,
it assumes a priori knowledge of stakeholders' values, and agree-
ment among stakeholders on those values. Monetizing environ-
mental benefits and costs to find a single “optimal” solution can fail
to capture the full range of achievable objective values, which
would better embody the range of preferences among different
stakeholders (see, e.g., Admiraal et al., 2013). Second, maximizing
the expected value of a utility function requires agreement on the
probability distribution of stochastic inputs, which poses severe
challenges for systems with deeply uncertain characteristics
(Lempert & Collins, 2007; Knight, 1921).

Recent many-objective extensions of the lake problem have
sought to explicitly capture the tradeoffs between economic and
environmental objectives (e.g., Singh et al., 2015; Hadka et al., 2015;
Ward et al., 2015), as well as deep uncertainty in the lake model
parameters (e.g., Singh et al., 2015; Hadka et al., 2015). Ward et al.
(2015) find that when optimizing pollution control strategies for
the town as a time series of P release decisions, several state-of-the-
art multi-objective evolutionary algorithms (MOEAs) fail to find
effective policies due to the high dimensional decision space for
candidate pollution control action, weak system responses to late
period decisions (i.e., temporal salience structure as discussed by
Thierens et al. (1998)), and the non-linear pollution threshold. One
way to potentially overcome these challenges is to employ a closed
loop control method in which knowledge of the system state is
used as a feedback control to inform the decision at each time step
(Bertsekas, 1995). Not only can the additional information provided
at each time step improve the signal of the late-period decisions,
but it can also allow for a different set of P release decisions under
different realizations of stochastic P inflows. The open loop inter-
temporal pollution control strategy employed byWard et al. (2015),
however, only finds one vector of pollution control decisions that
perform best in expectation, and is reflective of the methodologies
used in many environmental policy studies (e.g., Nordhaus, 2013).

Here, we employ a closed loop control strategy called direct
policy search (DPS), that has proven to be a simple and
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