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A B S T R A C T

Passive optical remotely sensed images such as those from the Landsat satellites enable the development of
spatially comprehensive, well-calibrated reflectance measures that support large-area mapping. In recent years,
as an alternative to field plot data, the use of Light Detection and Ranging (lidar) acquisitions for calibration and
validation purposes in combination with such satellite reflectance data to model a range of forest structural
response variables has become well established. In this research, we use a predictive modeling approach to map
forest structural attributes over the ~552 million ha boreal forest of Canada. For model calibration and in-
dependent validation we utilize airborne lidar-derived measurements of forest vertical structure (known as lidar
plots) obtained in 2010 via a> 25,000 km transect-based national survey. Models were developed linking the
lidar plot structural variables to wall-to-wall 30-m spatial resolution surface reflectance composites derived from
Landsat Thematic Mapper and Enhanced Thematic Mapper Plus imagery. Spectral indices extracted from the
composites, disturbance information (years since disturbance and type), as well as geographic position and
topographic variables (i.e., elevation, slope, radiation, etc.) were considered as predictor variables. A nearest
neighbor imputation approach based on the Random Forest framework was used to predict a total of 10 forest
structural attributes. The model was developed and validated on> 80,000 lidar plots, with R2 values ranging
from 0.49 to 0.61 for key response variables such as canopy cover, stand height, basal area, stem volume, and
aboveground biomass. Additionally, a predictor variable importance analysis confirmed that spectral indices,
elevation, and geographic coordinates were key sources of information, ultimately offering an improved un-
derstanding of the driving variables for large-area forest structure modeling. This study demonstrates the in-
tegration of airborne lidar and Landsat-derived reflectance products to generate detailed and spatially extensive
maps of forest structure. The methods are portable to map other attributes of interest (based upon calibration
data) through access to Landsat or other appropriate optical remotely-sensed data sources, thereby offering
unique opportunities for science, monitoring, and reporting programs.

1. Introduction

In Canada, forest ecosystems are a mosaic of trees, wetlands, and
lakes, occupying an area of ~650 million ha (Wulder et al., 2008b),
with a treed area of 347 million ha (Natural Resources Canada, 2016).
The boreal forest, an important source of both renewable and non-re-
newable resources, occupies an area of 552 million ha (with 270 mil-
lion ha of trees) and forms an east-west band across the country, re-
presenting a range of climatic, physiographic, and vegetation
conditions (Brandt, 2009). To effectively implement sustainable man-
agement and development practices aiming at accommodating both

conservation (e.g., preservation of wildlife habitats) and human use
needs (e.g., building materials, fuels), boreal forests require compre-
hensive, timely, and accurate inventory and monitoring efforts. To this
end, data collection campaigns are necessary to characterize and map
forest structure, determining attributes such as canopy cover, height,
biomass, stem volume as well as age, species, land-cover, and dis-
turbance history (White et al., 2014).

The availability of accurate national forest structural information,
often collected following sample-based inventories (Tomppo et al.,
2010), is the foundation for satisfying a variety of science and policy
information needs as well as for meeting national and international
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reporting obligations (Canadian Council of Forest Ministers, 1995).
However, there are important limitations of field plot-based measure-
ments such as their cost, lack of spatial coverage, and long updating
cycles. To cope with these field data collection issues, practitioners
often relied upon photo plots, an expert-based interpretation of aerial
imagery. For example, the Canadian National Forest Inventory (NFI) is
based upon a 1% national sample as represented by 2 × 2 km photo
plots established largely on a 20 × 20 km grid, supported by a subset of
ground plots, collected on a panel-basis over a 10 year update cycle
(Gillis et al., 2005).

More recently, Light Detection And Ranging (lidar) remote sensing
technology (Baltsavias, 1999) has gained popularity as a means to ob-
tain detailed 3-dimensional measurements of the structure of the ca-
nopy to represent forest conditions at a given place and time (Wulder
et al., 2008a). As reviewed in Nelson (2013), this potential of using
airborne laser-based acquisitions to study forested ecosystems was
identified in the 1970s. More specifically, transects of airborne lidar
data have been found to mitigate the costs of ground plot installation
and offer spatially extensive and representative sampling of calibration
and validation data to support the modeling of forest attributes (Wulder
et al., 2012b). Wulder et al. (2012a) outline the concept of lidar plots,
whereby samples of lidar are gathered (on a transect basis) to provide
regional representation and spatially referenced data suitable for the
development of such models.

At the same time, multispectral imagery from satellites platforms
has been demonstrated as a source of data to provide spatially com-
prehensive characterizations of forest attributes over large areas with a
level of spatial detail of relevance to the needs of forest inventory and
sustainable forest management (Brosofske et al., 2014; Cohen et al.,
2001; Woodcock et al., 1994). In particular, sensors of the Landsat
mission such as Thematic Mapper (TM) and Enhanced Thematic
Mapper Plus (ETM+) acquire reflectance products with suitable spec-
tral and spatial resolutions that can be used as support to map vege-
tation conditions and dynamics (Cohen and Goward, 2004). A known
limitation of medium resolution optical satellite imagery is radiometric
saturation of the recorded signal when estimating vertically distributed
attributes such as biomass or canopy height (Duncanson et al., 2010;
Lu, 2006, 2005). When utilizing this type of data to characterize large
areas, information on vertically distributed attributes can be obtained
by leveraging time-series of images providing insights on forest devel-
opment and succession through a reconstructed disturbance history
(Pflugmacher et al., 2012). In forest ecosystems the temporal series of
spectral information and related trends offers unique life-stage and
succession insights to aid in the modeling of structural attributes such
as stand height or biomass (Deo et al., 2017; Lu, 2006; Pflugmacher
et al., 2012; Powell et al., 2010; Zald et al., 2014). The opening of the
Landsat archive in 2008 (Woodcock et al., 2008) facilitated the im-
plementation of studies utilizing the complete spatial and temporal
depth of the Landsat archive (Hansen and Loveland, 2012; Wulder
et al., 2008b). Additionally, there has been extensive development in
routines to create composites free of atmospheric effects (Potapov et al.,
2011; Roy et al., 2010; White et al., 2014). These composites can be
used to detect and label change (Hermosilla et al., 2015a) as well as to
uncover and quantify trends (Ju and Masek, 2016).

In recent years, there has been wide interest in developing methods
relying on optical imagery to extrapolate forest structural data beyond
lidar or field data coverage to represent an entire area of interest. Such
approaches generally rely on statistical predictive modeling to relate
localized measurements of forest conditions (e.g., lidar) and image-
derived information covering broader areas (Wulder et al., 2012b). The
forest/vegetation attributes of interest (canopy cover, tree height, dia-
meter at breast height, basal area, biomass, stem volume, etc.) re-
present the response variables to be modeled, whereas features ex-
tracted from multispectral satellite images or other geospatial datasets
such as Digital Elevation Models (DEM) or climatic layers constitute the
predictor variables, or predictors. To implement these image-based

spatial predictions, common methods include linear regression or
Random Forest (RF) (Breiman, 2001). RF offers robust, accurate and
scalable solutions to both regression and classification problems, al-
lowing at the same time the user to gain insights on the model by means
of implicitly produced variable importance measures. Application ex-
amples of RF can be found in both the remote sensing (Belgiu and
Drăgu, 2016; Gislason et al., 2006) and forestry communities (Gleason
and Im, 2012; Latifi et al., 2010). In forestry, another increasingly
common approach is nearest neighbor (NN) imputation (Eskelson et al.,
2009; Ohmann and Gregory, 2002). In contrast to regression ap-
proaches that can distort marginal distributions and covariation be-
tween Y-variables, imputation fills in missing data by substituting va-
lues from donor observations, with the underlying assumption that two
locations with similar values of X-variables should be similar with re-
spect to Y-variables. A major strength of imputation approaches is these
donor-based methods are multivariate, non-parametric, and distribu-
tion-free (Eskelson et al., 2009).

Table 1 summarizes the key characteristics (type of input data,
methods employed, forest attributes modeled, study area) of recent
studies which combine lidar or field data and optical imagery to map
forest structural attributes, recognizing that a number of studies also
exist which produced carbon estimates in a laser profiling context (e.g.,
Nelson et al., 2017). The majority of these previous studies has tested
methodologies over small areas (e.g., Ahmed et al., 2015). At the re-
gional scale, Landsat imagery has been used in a number of studies to
interpolate or extrapolate airborne lidar-based estimates of forestry
productivity. Principally in forested areas these approaches have used a
variety of statistical and model-based approaches to predict a range of
attributes, most often height and aboveground biomass in either the US,
Canada or Europe. Statistical approaches range from conventional re-
gressions to more advanced ensemble methods like RF or regression
trees such as in Hansen et al. (2016) who extrapolated Geoscience Laser
Altimeter System (GLAS) tree height data with Landsat time-series in
Sub-Saharan Africa. Profiling lidar data collected by the Portable Air-
borne Laser System (PALS) has also been used to provide high precision
height measurements to be combined with GLAS pulses and Landsat-
derived land-cover strata to produce local biomass and carbon esti-
mates (Margolis et al., 2015; Neigh et al., 2013). Zald et al. (2016)
applied an imputation model to map forest attributes over 50 Landsat
WRS-2 scenes (forested ecozones of Saskatchewan) using a set of
Landsat spectral, change and topographical predictor variables with
reported accuracies in the 0.42–0.69 R2 range when validating against
independent lidar plots. Common to most of these approaches is the
recognition that these technologies can inform forest management and
reporting activities as well as to offer spatially explicit inputs to carbon
accounting models (White et al., 2014). The level of spatial detail ul-
timately dictates the application and utility of a given structural map
product. Studies that have been undertaken over large areas, have ne-
cessitated the use of more coarse spatial resolution imagery reducing
the applicability below the regional scale. For example, Lefsky (2010)
and Simard et al. (2011) both produced global tree height maps by
intersecting GLAS height estimates with forest layers obtained from
Moderate Resolution Imaging Spectroradiometer (MODIS) images. Also
relying on MODIS imagery, Beaudoin et al. (2014) produced Canada-
wide estimates of a large number of forest attributes using NFI photo
plot data for calibration and validation.

In this paper, building on the regional mapping effort by Zald et al.
(2016), we present a methodological framework to combine wall-to-
wall Landsat surface reflectance composites, forest change information,
and descriptors of topography/location to map forest attributes (in-
cluding canopy cover, height, aboveground biomass and stem volume)
longitudinally across a continent. In so doing, we generate information
products relating to forest structure at the unprecedented spatial re-
solution of 30 m for the entire 552 million ha Canadian boreal forest,
representing 2010 conditions. We address, document, and commu-
nicate challenges related to data processing architecture, modeling

G. Matasci et al. Remote Sensing of Environment 209 (2018) 90–106

91



https://isiarticles.com/article/96340

