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a b s t r a c t

In an optimal computing budget allocation problem, different measures of selection quality determine
how the best set of designs can be identified and how the simulation budget should be allocated among
the designs. In this paper, we look at severalmeasures of selection quality and derive respective allocation
rules for themulti-objective computing budget allocation problem. Some computational experiments are
carried out to compare the performance of the allocation rules and to identify the suitable ones in certain
scenarios.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Simulation plays a crucial role in analyzing discrete-event
systems, in particular, when comparing alternative system designs
with a view to optimizing system performance (Chen, Chen,
Yücesan & Dai, 1998). However, due to the slow convergence
of performance, simulation efficiency is still a major concern
especially when the number of competing designs to be compared
is large. This explains the increasing popularity of research
in ranking and selection (R&S): techniques that determine the
number of simulation replications required for each design so
that a certain measure of selection quality is guaranteed at a pre-
specified levelwith the least possible computational expense. For a
comprehensive review of this field, see Branke, Chick, and Schmidt
(2007), Kim and Nelson (2003, 2007) and Swisher, Jacobson, and
Yücesan (2003).

To identify the best system from a set of alternatives, one
first needs to specify by which criterion we compare the systems
and select the best one, i.e., how to measure the evidence
of correct selection. In most studies, the selection quality is
measured by the probability of correct selection (PCS), which is
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defined as the probability that the selected best is the true best.
Solution approaches using PCS as the measure of selection quality
include the indifference-zone (IZ) ranking and selection (Nelson,
Swann, Goldsman, & Song, 2001; Pritsker, 1986), the decision
theoretic methods (Chick, 1997), and the optimal computing
budget allocation (OCBA). The IZ-based procedure allocates
additional replications based on a least-favorable configuration
(LFC) formulation, and causes the allocation efficiency to be more
conservative. To improve on this, the OCBA framework follows
a Bayesian methodology and allocates additional replications by
solving the problem as an optimization problem, in which PCS
is maximized with a given total computing budget available. The
numerical results show that the OCBA is able to give better results
in terms of using the least computing budget for a given level
of PCS. For more details, refer to Chen, Chen, and Dai (1996),
Chen, Chen, and Yücesan (2000), Chen, Dai, Chen, and Yücesan
(1997), Chen, Donohue, Yücesan, and Lin (2003) and Chen, Lin,
Yücesan and Chick (2000). Another measure of selection quality,
known as the expected opportunity cost (EOC), aims to quantify
how far away the selected system is from the true best system.
This measure is important as it not only maximizes the chance of
selecting the best design, but also if it fails to find the best design, by
optimizing this measure, it will ensure the selected design will not
be very far off from the best design. EOC is defined as the difference
inmeans between the selected systemand the true best. It has been
applied in some Bayesian decision theoretic methods, in which
additional replications are allocated in a way that the expected
value of information gained from the replications is maximized
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(Chick & Inoue, 2001). In Chick (2003), a selection procedurewhich
can provide an upper bound for the EOC in a frequentist sense
was proposed. The paper bridged a gap between the IZ approach
(with frequentist guarantees) and the Bayesian approach (where
the EOC is considered) to the selection procedures. Within the
OCBA framework, EOC is applied and studied in He, Chick, and
Chen (2007), where the original OCBA based on maximization of
PCS is extended to a new OCBA seeking minimization of EOC.
The expected Net Present Value (NPV), as a measure of selection
quality, was proposed in Chick and Gans (2006). NPV concerns not
only the economic benefit from implementing the selected system,
but also the marginal costs of simulation runs and discounting
due to simulation analysis time. NPV is to be maximized to
underline the financial significance of the selected systems when
the system performance and simulation results are themselves
financial measures.

When the systems to be compared are evaluated in terms of
more than one performance measure, the R&S problem becomes
a multi-objective Ranking and Selection (MORS) problem. The
MORS problem has not been as well studied as its single objective
counterpart. In the case where a single best solution is pursued,
the problem is often transformed into a single-objective problem
and PCS is often used as the measure of selection quality (Butler,
Morrice, & Mullarkey, 2001). Another line of research treats the
multi-objective problem as it is and applies the concept of Pareto
Optimality to find all non-dominated solutions. In Lee, Chew,
Teng, and Goldsman (2004, 2010), Multi-objective Computing
Budget Allocation (MOCBA) frameworks, extensions of OCBA in
the single objective case, were proposed. In Lee et al. (2004),
the selection measure is a performance index defined as the
cumulative probability that a design is dominated by all the other
designs. With the assumption that the number of non-dominated
designs is known, non-dominated designs can be identified as
those with performance indices approaching zero. Lee et al. (2010)
improved the measure of selection quality by defining it as two
types of errors associated with the Pareto and non-Pareto sets. The
two types of errors are a generalization of the PCS concept; when
both of them approach zero, the true Pareto set is found with no
need of assuming the known number of non-dominated designs.

However, the solution framework proposed in Lee et al. (2010)
still has several potential limitations. First, the allocation rules are
derived separately — one rule for minimizing one type of errors;
and the two rules are used iteratively during the allocation. This
may not be optimal when it is compared to the allocation rules
derived from maximizing the PCS of the Pareto set. Secondly, it
fails to reflect how poor a potential incorrect selection might be.
For instance, when a dominated solution is selected into the Pareto
set, MOCBA cannot tell how much the dominated solution needs
to be improved so that it becomes non-dominated. This difficulty
arises because quality of the Pareto set is evaluated in terms of
probability, and it cannot be overcome unless we employ EOC as
a measure of selection quality. In this paper, our main purpose
is to address the above issues by applying different measures of
selection quality to solve the MORS problem. We will derive and
compare allocation rules which optimize different measures of
selection quality. The organization of this paper is given below.
In Section 2, we present a general framework for solving the
MORS problem. Allocation rules derived from minimization of
EOC and maximization of PCS are given in Sections 3 and 4,
respectively. Then the allocation rules are tested and compared in
Section 5. Finally some conclusions and future research directions
are summarized in Section 6.

2. A general solution framework for the MORS problem

Without loss of generality, we assume that minimization of the
objectives is our goal in this study.

2.1. A Bayesian framework and the concept of dominance

We first establish the following notation:
S: The design space containing all n designs, |S| = n.
Sp: The observed Pareto set, i.e., the Pareto set constructed based
on observed performances.
S̄p: The observed non-Pareto set, i.e., S̄p = S \ Sp.
Ni: The number of replications allocated to design i.
H: The number of performance measures for each design.
µi: The vector of true performance measures of design i; µi =

(µi1, . . . , µiH)

µ̃i: A vector of random variables having the posterior distribution
of the true performancemeasures of design i; µ̃i = (µ̃i1, . . . , µ̃iH).
µ̂i: An l × H matrix representing l independent simulation
observations for H performance measures of design i.
µ̄ik: The sample mean of simulation output for the kth objective of
design i; µ̄ik =

1
l

∑l
s=1 µ̂s

ik.

σ 2
ik: The variance of simulation output for the kth objective of

design i, which is to be estimated by sample variance σ̂ 2
ik =

1
l−1

∑l
s=1(µ̂

s
ik − µ̄ik)

2.
In this study, to make the problem more tractable, we assume

that simulation outputs are independent across: (1) different
replications; (2) different designs; (3) different performance
measures of the same design. Therefore µ̂s

ik, the sth simulation
observation for the kth objective of design i is independent of all
other µ̂s

ik’s.

Remark. We realize that in real-life problems, the performance
measures of the same design are often dependent, for example, the
cost and the quality of products in product-design optimization.
The purpose of the independence assumption is to make it easier
to derive the allocation rules which are indeed also applicable to
the case when performance measures are dependent. For a more
detailed explanation and numerical illustration, refer to Lee et al.
(2010).

We address the MORS problem within a Bayesian framework.
For any design i, its true performance measures µi are unknown,
and are to be estimated by observing the performance measures
µ̂i through simulation. Assume that each unknown performance
measure µik, for k = 1, 2, . . . ,H , has a normal prior
distribution, and no prior knowledge on the performance of any
design is available before conducting the simulation. Given that
µ̂1

ik, µ̂
2
ik, . . . , µ̂

l
ik are l independent simulation observations for the

kth objective of design i, and σ 2
ik is the known variance of the

kth objective of design i, then according to DeGroot (1970), the
unknown true performance measure µik can be described by its
posterior distribution,

µ̃ik ∼ N(µ̄ik, σ
2
ik/l) (1)

where µ̄ik =
1
l

∑l
s=1 µ̂s

ik is the sample mean of the simulation
output, and σ 2

ik is approximated by the sample variance σ̂ 2
ik =

1
l−1

∑l
s=1(µ̂

s
ik − µ̄ik)

2. In this way, the comparison of two
performancemeasuresµik andµjk becomes the comparison of two
random variables µ̃ik and µ̃jk following the posterior distribution
(1) derived from the most-recently available simulation output.

In addition to using the Bayesian framework to develop
a posterior distribution for performance measure µ̃ik through
observation of simulation output, we also use it to approximate
the predicted distribution of µ̃ik if additional replications were to
be allocated. We assume that, in the predicted distribution, as the
simulation budget increases, µ̄ik and σ̂ 2

ik do not change (Chen et al.,
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