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a b s t r a c t 

Cultivating neural populations onto microelectrode arrays (MEAs) is a popular technique used by neuro- 

scientists to study cortical microcircuits in a more controlled setting than they appear in vivo . However, 

recent works show that these neural cultures may be more than just another analog to the brain—they 

can also be used to compute. Researchers in academia and industry may soon need the computing power 

of a true neuromorphic computer: a silicon computing device that utilizes the processing power of bio- 

logical neurons. Such a device can be realized by cultivating biological neurons onto an MEA in vitro and 

carefully interfacing the MEA to a computer or robot. This new device can make use of short- and long- 

term memory mechanisms intrinsic to biological neurons to train neuronal cultures to perform unique 

computations. Research shows this type of computing device may be able to solve problems in fields 

like image recognition, temporal pattern classification, and others. In this paper, we review the meth- 

ods of interfacing cultures with MEAs, learning mechanisms exhibited in neuronal cultures, the current 

applications of a neuron–silicon hybrid computing device in research, and potential challenges this field 

may face. We propose that the current research in neurocomputers has provided the foundations for a 

new era in computing, one in which the computational power of true biological neural networks may be 

exploited and eventually surpass the power of artificial neural networks. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Artificial Intelligence (AI) is an interdisciplinary field with the 

goal of imitating the computational versatility of human intelli- 

gence with silicon technology. Neural networks composed of real 

or simulated neurons are capable of this flexibility and can solve 

computationally difficult problems like pattern recognition and 

classification [46] . However, simulating large neural networks with 

traditional computers has proven challenging due to the huge com- 

putational resources required. 

One approach to solve this problem is to incorporate biologi- 

cal neurons into silicon technology to create a neurocomputer—a 

hybrid silicon-tissue computing machine that utilizes the process- 

ing power of biological neurons to perform computations on an 

input. Biological neurons can effortlessly make numerous intercon- 

nections between themselves and adapt those connections through 
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Hebbian learning [43] . These advantages could be utilized in a neu- 

rocomputer to perform the same computations while sparing the 

resources required to simulate neurons like in a recurrent neural 

network. 

This new computational paradigm provides its own unique 

challenges in areas such as device design and understanding of 

neural cultures. However, these neurocomputers may have some 

niche applications to traditionally incomputable problems, such as 

how DNA computing solved the Hamiltonian path problem [3] . 

Neurocomputers have shown promising results in the fields of 

spatiotemporal pattern classification [14,27,53,54] , simple image 

recognition [82] , and liquid-state computing [26,71] . The purpose 

of this paper is to explore and assemble a body of research that 

could aid in the advancement of the neurocomputer. 

Within the scope of this paper, we explore key technologies 

which may prove pivotal in designing an interface to commu- 

nicate between the silicon-instantiated and neuron-instantiated 

computational components, including silicon chip interfaces, com- 

plementary metal-oxide semiconductor (CMOS) interfaces, two- 

dimensional (2D) microelectrode arrays (MEAs), improving biosim- 

ilarity between the two components, and three-dimensional (3D) 
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neural cultures. Then, we explore the basic neural mechanisms 

which a neurocomputer would exploit to train the neural compo- 

nent of the device. We provide a brief history of the young field 

and explore notable applications of the technology, and close with 

challenges and future directions of the field. 

2. Methods 

2.1. Interfaces 

Central to the design of the neurocomputer is the process of 

interfacing between the neuron and silicon components of the 

device. By sending specific stimuli to the neural network, it is 

possible to condition the network and teach the biological sys- 

tem to perform computations using neural learning mechanisms 

such as long-term potentiation (LTP) [82] . Alternatively, activity 

from the neural network can be measured and sent to the silicon- 

instantiated computer. Both the input and output process of the 

neurocomputer is dependent on the design of the interface. 

In device design, the main challenges revolve around neuron–

electrode interfaces: (i) connections made onto the cultivated neu- 

ral networks in today’s technology are significantly less complex 

compared to the human brain; (ii) there exists a limit in the com- 

plexity of biological neural network design; (iii) small volume size 

in electrodes must be maintained to minimize tissue damage, but 

recording sites must be large enough to maintain signal integrity; 

and (iv) the neuron–electrode interface must be biocompatible 

over long periods of time. These issues will be explored through- 

out this review. 

Methods for intracellular recordings of neuron membrane po- 

tentials have been around for decades [10,94] . Early neuron record- 

ings involved maneuvering a sharp electrode with a micromanip- 

ulator to penetrate a cell membrane and make physical contact 

with the cytosol [41] . This method of recording provides great cou- 

pling with selective single cell stimulation while generating reli- 

able data [89] . However, due to the bulky size of the micromanip- 

ulator and the biophysical instability of the electrode-cell interface, 

this method of recording can only be done on a small number of 

neurons for a short time, which significantly limits any potential 

applications to the multi-cell circuits involved in neurocomputing 

[9,31] . 

Substrate-integrated MEAs are more popular for extracellular 

recordings of larger neural circuits [44] . In most MEA recording ex- 

periments, cells are seeded onto a bed of electrodes and allowed 

to grow into a circuit with either random or directed connections 

between neurons [41] . MEAs are capable of measuring extracellu- 

lar activity of more than 10,0 0 0 individual neurons by using thou- 

sands of electrodes [40,64,87] . This design provides a high tempo- 

ral resolution and enough spatial resolution to detect single action 

potentials even within synchronized bursts [41] . 

However, there are interfacing techniques which may prove 

useful in the development of a neurocomputer and which diverge 

from common MEA techniques, such as silicon chip interfaces and 

CMOS integrated interfaces. This section will review these tech- 

niques as well as MEA technology. 

2.1.1. Silicon chip interfaces 

Unique from MEAs, silicon chip interfaces can be constructed 

by taking two disconnected neurons (in [13] , cultivated from the 

pedal ganglia of the pond snail Lymnaea stagnalis) and attaching 

them onto the silica surface of a microstructured chip (shown in 

Fig. 1 (B)) to perform non-invasive electronic recording and stimu- 

lation [13] . This technique eschews the use of an MEA entirely in 

favor of a microstructured silicon chip. The entire pathway of the 

hybrid neuron silicon chip can be broken down into five stages: (1) 

recording neural activity from the first neuron by the first contact, 

(2) translating the neural signal to a digital signal, (3) sending the 

digital signal through a delay line, (4) triggering a voltage pulse in 

the second contact and (5) eliciting an action potential from the 

second neuron by the second contact. 

The microstructured chip is a two-unit system; one unit inter- 

faces the neurons and the other unit processes the signal ( Fig. 1 (A), 

left subplot). Two neurons are placed on top of a two-way interface 

contact (shown in Fig. 1 (B)). The left contact is called a transistor 

while the right is called a capacitive stimulator ( Fig. 1 (B), left sub- 

plot). The transistor consists of a boron doped source and drain 

channel and a gate channel covered with a non-metal oxide, while 

the capacitive stimulator is boron-doped ( Fig 1 (A), right subplot). 

The role of the transistor is to detect the firing of an action poten- 

tial within Neuron A , and then transform the response to a digital 

signal to be sent across the delay line. The signal then triggers a 

burst of voltage pulses that is applied to the capacitive stimula- 

tor. The capacitive stimulator elicits an action potential from Neu- 

ron B . The two units are then bonded side-by-side beneath a Per- 

spex chamber. The chamber is designed to hold the cell culture 

medium where the interfacing unit comes in contact with the cul- 

ture medium ( Fig. 1 (C), right subplot). 

The circuit model of the neuron–silicon chip–neuron pathway 

is shown in the left subplot of Fig. 1 (C), where the upper portion 

shows the equivalent circuit of the neuron–silicon coupling. The 

capacitance forming around the neuron is due to its surroundings 

and the interface. The lower portion illustrates the block circuit di- 

agram of the electronic processor, both the transistor and capaci- 

tive stimulator. The cells are separated from the chip by a narrow 

film of electrolyte with low conductance to increase the biocom- 

patibility of the device. 

This device shows that on a microscopic level, an action poten- 

tial generated from an individual neuron can be sent to a digital 

electronic processor, and a simple capacitive stimulator can elicit 

an action potential from an individual neuron [13] . Expanding this 

technology to interface whole neuronal cultures in a neurocom- 

puter would be challenging. However, advancements in this tech- 

nology may allow direct, lossless communication between individ- 

ual neuron and neuron populations across long distances while 

avoiding the intricacies involved in creating long-distance neural 

connections via axons. These connections could be used for con- 

necting multiple layers of networks required in pattern recognition 

and other complex computations. 

2.1.2. Interfacing using CMOS circuits 

In addition to using silicon chip interfaces, researchers de- 

veloped a double-sided, single-chip device that integrates CMOS 

circuits with micro-electro-mechanical system (MEMS) structures 

through the use of through-silicon via (TSV) electrical connections. 

A TSV is an electrical connection that passes through the entire 

double-sided device in order to send information from the CMOS 

to the MEMS section while avoiding degradation of the signal 

( Fig. 2 ) [17] . The redistribution layers (RDL) placed on the front 

side of the chip serve to create a connection between the CMOS 

circuit and TSVs. 

This new approach integrates various technologies, ( i.e. CMOS, 

MEMS, nanoelectronics, etc. ) in order to advance neural sensing, 

processing, networking, and developing neural prosthetics [17] . 

While this device was developed to serve as a neural implant with 

a smaller footprint, this technology could also serve as an inter- 

face between the neural and silicon components of a neurocom- 

puter. The device collects more information from a smaller, more 

specific neural population and avoids interference from surround- 

ing circuits. In addition, due to the layout of the double-sided in- 

tegrated chip, the device uses area efficiently which results in a 

smaller neurocomputer [17] . 
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