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a b s t r a c t 

We investigate periodic investment problems under a Black–Scholes market with stochastic drift. The 

decision maker invests a series of positive amounts at finitely predetermined time spots, to maximize 

the expected terminal wealth while controlling its downside risk as measured by the Condition Value at 

Risk (CVaR). It turns out that the increment for unit wealth on the whole path can be divided into two 

parts: the increment corresponding to the stochastic drift and that corresponding to the Brownian Mo- 

tion. A comonotonic approximation is proposed for the second part, and an upper bound is provided for 

the CVaR of the first part, which construct together a closed-form approximation of the terminal wealth 

under the risk measure of CVaR. We further decompose the problem into a sequence of sub-problems 

whose optimal solutions are explicit and follow fractional Kelly Strategy. Numerical and empirical results 

illustrate the performance of our methodology. 

© 2017 Published by Elsevier B.V. 

1. Introduction 

Portfolio selection refers to determining the best allocation 

of wealth among various securities (e.g., risky and risk-free as- 

sets) over a given horizon. Markowitz (1952 , 1956) introduced 

the mean-variance portfolio selection model and provided the 

foundation for modern finance theory, inspiring a substantial 

number of extensions and applications. The pioneering work 

of Merton (1972) created analytical portfolio policies and the 

mean-variance efficient frontier for static mean-variance portfolio 

selection problems. Moreover, Li and Ng (20 0 0) and Zhou and Li 

(20 0 0) extended the formulation to multi-period and continuous 

time settings, respectively. Cui, Gao, Li, and Li (2014) further 

advanced this problem by characterizing the structure of optimal 

portfolio policies. Most literature on dynamic portfolio selection, 

e.g., surveyed by Detemple (2014) , Abdelaziz, Aouni, and El Feyedh 

(2007) and Kolm, Tütüncü, and Fabozzi (2014) among others, 

focused on self-financing settings, i.e., the investor cannot inject 

extra capital into or withdraw cash flow from the portfolio during 

intermediate periods. As a generalization of classical portfolio 

selection problems, the periodic investment problem, considered 
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in this paper, assumes that the decision maker invests a given 

series of positive amounts αi , at predetermined time spots, 1 ≤
i ≤ N , such that the expectation of his/her terminal wealth at 

time N would be maximized, while keeping the downside risk as 

measured by the Conditional Value at Risk (CVaR) under control. 

Particularly, we assume that prices of risky assets satisfy the 

Black–Scholes model ( Black & Scholes, 1973 ) with stochastic drift. 

Dhaene, Vanduffel, Goovaerts, Kaas, and Vyncke (2005) in- 

vestigated the periodic investment problem, where risky assets 

follow the Black–Scholes model with constant drift. However, as 

indicated in Chopra and Ziemba (1993) , specifying the expected 

rate of return (or the drift) of the risky asset based on statistical 

forecasting procedures may suffer from large estimation errors, 

which would significantly damage optimal portfolio selection 

decisions. In light of this observation, MacLean, Zhao, and Ziemba 

(2006) adopted the Black–Scholes model with stochastic drift to 

investigate dynamic portfolio selection problems with process 

control. They developed fractional Kelly-strategy type optimal 

solutions as qX 

∗, where X 

∗ denotes the well-known Kelly portfolio 

strategy (or the so called optimal growth portfolio in literature) 

proposed in Kelly (1956) and fraction q controls the downside risk. 

It is worth noting that, MacLean et al. (2006) applied a Bayesian 

framework in their model specification to update forecasts of the 

stochastic drift whose prior distribution is assumed to be normal. 

In contrast, we adopt a distribution-free setting for the stochastic 

drifts of risky assets, only specifying their means and covariance 
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matrix. This distribution-free setting is common in the literature. 

For instance, without strong assumptions about the distribution, 

Bertsimas and Pachamanova (2008) suggested different robust 

formulations of the multi-period portfolio management problem 

with transaction costs. They showed that a robust polyhedral 

optimization, in particular, could enhance the performance of 

single-period and deterministic multi-period portfolio optimiza- 

tion methods. However, their robust approach is based on the 

uncertainty set for asset return rather than the stochastic drift 

under the Black–Scholes model. 

From a mathematical perspective, risk management is a proce- 

dure for shaping a risk distribution. Popular risk measures are VaR 

and CVaR. Sarykalin, Serraino, and Uryasev (2008) provided intro- 

ductions to these risk measures with their applications. Inspired 

by the risk management procedures proposed in Sarykalin et al. 

(2008) , the periodic investment problem in this paper is formu- 

lated as an optimization problem which maximizes the expected 

return of terminal wealth, while controlling its downside risk as 

measured by CVaR. We develop an approach based on the comono- 

tonic approximation methodology to tackle this problem. The con- 

cept of comonotonicity is a powerful tool in actuarial science and 

finance (see Dhaene, Denuit, Goovaerts, Kaas, & Vyncke, 2002a; 

2002b ) for a comprehensive summary of its theory and applica- 

tions, respectively). For example, Dhaene et al. (2005) , Dhaene and 

Goovaerts (1996) and Kaas, Dhaene, and Goovaerts (20 0 0) devel- 

oped comonotonic approximations for classical portfolio selection 

problems (without stochastic drift in the dynamics of risky assets) 

within the family of constant mix strategies, while Pagnoncelli 

and Vanduffel (2012) applied such approximations to provisioning 

problems related to periodic investment. 

In this paper, we obtain closed-form comonotonic approxima- 

tions to the periodic investment problems under CVaR risk control, 

with an assumption of geometric Brownian Motion with stochas- 

tic drift. The increment for unit wealth on the entire path can 

be divided into two parts: the increment corresponding to the 

stochastic drift and that corresponding to the Brownian Motion. A 

comonotonic approximation is proposed for the second part and 

an upper bound is provided for the CVaR of the first part, respec- 

tively, which together construct a closed-form approximation to 

the terminal wealth under the risk measure of CVaR. We further 

decompose the original multi-period problem into a sequence of 

single-period ones whose optimal solutions are explicit and follow 

fractional Kelly Strategy. In summary, our contributions and their 

significance are as follows: 

(1) We study the periodic investment problem under the setting 

of a Black–Scholes model with stochastic drift characterized 

by a distribution-free framework. The distribution-free set- 

ting under the Black–Scholes model is new to the literature 

of periodic investment problems. 

(2) Based on our new setting, different from MacLean et al. 

(2006) and Dhaene et al. (2005) , we divide the terminal 

wealth under CVaR into one part corresponding to the Brow- 

nian Motion and the other corresponding to the stochastic 

drift. 

(3) Based on the definition for CVaR in Sarykalin et al. (2008) , 

we derive closed-form upper bounds for CVaR over the ter- 

minal wealth corresponding to the stochastic drift and Brow- 

nian Motion, respectively. 

(4) We decompose the terminal wealth problem into a series of 

sub-problems within the constant mix strategy, whose opti- 

mal solutions follow the fractional Kelly Strategy. Compared 

to MacLean et al. (2006) , our proposed solution technique 

solves CVaR over stochastic drift within the distribution-free 

setting. 

(5) Based on the optimal constant mix strategy, we design a dy- 

namic control strategy in a rolling horizon manner for the 

periodic investment problem. 

The remainder of the paper is organized as follows. The ter- 

minology and preliminaries are introduced in Section 2 . We then 

set up the terminal wealth problem in Section 3 . As previously 

mentioned, the increment for the portfolio can be divided into 

the one corresponding to the stochastic drift and the other cor- 

responding to the Brownian Motion. In Section 4 , an upper bound 

for the CVaR of the first part is developed and CVaR for the sec- 

ond part is calculated. Furthermore, based on the closed form of 

terminal wealth under CVaR, the solution technique for the termi- 

nal wealth problem is provided by decomposing it into subprob- 

lems. For each subproblem, the closed form of optimal portfolio 

selection is proved to be a fractional Kelly Strategy. Subsequently, 

the dynamic control strategy for the periodic investment problem 

is developed based on the constant mix strategy by a rolling hori- 

zon manner in Section 5 . The efficiency of our approximation for 

terminal wealth is tested via numerical experiments and the per- 

formance of proposed periodic investment strategy is shown by 

empirical experiments in Section 6 . Section 7 concludes the paper 

and proposes future research direction. All proofs are presented in 

Appendix A . 

2. Preliminary settings 

2.1. Periodic investment problems 

Consider a multi-period discrete-time horizon with N periods 

and the investor has endowments αk , k = 1 , 2 , . . . , N at the begin- 

ning of the k -th period. Suppose the investor can allocate his/her 

wealth in a basket of m + 1 assets, i.e., m risky assets and one 

risk-free asset. Let X(t) = (x 1 (t) , x 2 (t ) , . . . , x m 

(t )) be the vector of 

proportions invested in each risky asset, while 1 − ∑ m 

i =1 x i (t) is in- 

vested in the risk-free asset. A negative proportion invested in the 

risk-free asset is allowed. The investor can only rebalance his/her 

portfolio at the beginning of each period. We further assume the 

following Black–Scholes model with stochastic drifts for the prices 

of risky assets: 

dP i (t) 

P i (t) 
= ˜ μi d t + σi d B i (t) , P i (0) > 0 , 1 ≤ i ≤ N, 

and P 0 (t) = P 0 (0) e rt for the risk-free asset, where B i ( t ), 1 ≤ i ≤ N 

are (correlated) standard Brownian Motions with Cov (B i (t) , B j (t + 

s )) = ρi j t for 1 ≤ i , j ≤ N and t , s ≥ 0. Note that the correlation 

coefficients ρ ij , 1 ≤ i , j ≤ N are constants and the drifts ˜ μi for 1 ≤ i 

≤ N are specified as follows. Similar to MacLean et al. (2006) , for 1 

≤ i ≤ N , the drift ˜ μi depends on common factors F l , l = 1 , 2 , . . . , s, 

as: 

˜ μi = μ̄i + 

s ∑ 

l=1 

λil F l , (1) 

where μ̄i is a constant and F l are normalized independent market 

factors (with zero mean and unit variance). Unlike the Bayesian 

Framework in MacLean et al. (2006) , we do not make strong as- 

sumptions on distributions of ˜ μi and F l . It is only assumed that 

the mean and co-variance matrix for ˜ μi , i = 1 , 2 , . . . , m, are known. 

From (1) , since F l for l = 1 , 2 , . . . , s are independent, the element 

γ ij in covariance matrix �′ := ( γ ij ) m × m 

of ˜ μ = ( ̃  μ1 , ˜ μ2 , . . . , ˜ μm 

) 

are determined by 

γi j = 

s ∑ 

l=1 

λil λ jl . (2) 



https://isiarticles.com/article/96578

