
Big Data Research 9 (2017) 47–56

Contents lists available at ScienceDirect

Big Data Research

www.elsevier.com/locate/bdr

Partial Rollback-based Scheduling on In-memory Transactional Data 

Grids

Junwhan Kim

a r t i c l e i n f o a b s t r a c t

Article history:
Received 2 June 2016
Received in revised form 17 January 2017
Accepted 8 June 2017
Available online 24 August 2017

Keywords:
In-memory data grids
Distributed software transactional memory
Transactional scheduling

In-memory transactional data girds, often referred to as NoSQL data grids demand high concurrency for 
scalability and high performance in data-intensive applications. As an alternative concurrency control 
model, distributed transactional memory (DTM) promises to alleviate the difficulties of lock-based 
distributed synchronization. However, if a transaction aborts, DTM suffers from additional communication 
delays to remotely request and retrieve all its objects again, resulting in degraded performance. To avoid 
unnecessary aborts, the multi-versioning (MV) model of using multiple object versions in DTM can be 
considered. MV transactional memory inherently guarantees commits of read-only transactions, but limits 
concurrency of write transactions. We present a new transactional scheduler, called partial rollback-based 
transactional scheduler (or PTS), for a multi-versioned DTM model. The model supports multiple object 
versions to exploit concurrency of read-only transactions, and detects conflicts of write transactions at an 
object level. Instead of aborting a transaction, PTS assigns backoff times for conflicting transactions, and 
the transaction is rolled-back partially. We implemented PTS on Infinispan, and conducted comprehensive 
experimental studies on no and partial replication models. Our implementation reveals that PTS improves 
transactional throughput over MV-Transactional Forwarding Algorithm without PTS and a scalable one-
copy serializable partial replication protocol (SCORe) by as much as 2.4× and 1.3×, respectively.

Published by Elsevier Inc.

1. Introduction

In-memory data grids are increasingly common recently be-
cause of their support for dynamic scalability and high perfor-
mance for data-intensive analytics. Some of the products such 
as Red Hat’s Infinispan, Oracle’s Coherence, and Apache Cassan-
dra [23] have been proposed for extreme data management. For 
transactional processing on in-memory data grids, lock-based con-
currency controls have been used but suffered from programma-
bility, scalability, and composability challenges [24]. Transactional 
memory (TM) promises to alleviate these difficulties.

With TM, code that read/write shared objects is organized as 
transactions, which optimistically execute, while logging changes 
made to objects. Two transactions conflict if they access the same 
object and one access is a write. When that happens, a contention 
manager resolves the conflict by aborting one and allowing the 
other to proceed to commit, yielding (the illusion of) atomicity. 
Aborted transactions are re-started, after rolling-back the changes 
(thanks to the log). Sometimes, a transactional scheduler is also 
used, which determines an ordering of concurrent transactions so 
that conflicts are either avoided altogether or minimized, thereby 
reducing aborts and improving performance. In addition to a sim-
ple programming model, TM provides performance comparable to 
lock-based synchronization [37] and is composable. Multiprocessor 

TM has been proposed in hardware (HTM), in software (STM), and 
in hardware/software combination. See [24] for an excellent tuto-
rial on TM. Distributed STM (or DTM) has been similarly motivated 
as an alternative to distributed lock-based concurrency control [8,
35,36].

With a single copy for each object, i.e., single-version STM (SV-
STM), when a read/write conflict occurs between two transactions, 
the contention manager resolves the conflict by aborting one and 
allowing the other to commit, thereby maintaining the consistency 
of the (single) object version. SV-STM is simple, but suffers from 
large number of aborts [31]. In contrast, with multiple versions for 
each object, i.e., multi-versioning STM (MV-STM), unnecessary (or 
spare) aborts of transactions that could have been committed with-
out violating consistency are avoided [19]. Unless a conflict be-
tween operations to access a shared object occurs, MV-STM allows 
the corresponding transactions to read the object’s old versions, 
enhancing concurrency. MV-STM has been extensively studied for 
multiprocessors [30,31,13] and also for distributed systems [20].

In this paper, we consider scheduling transactions based on 
partial rollback to improve the performance in DTM. Two kinds 
of transactional schedulers have been studied in the past: reac-
tive [11,2,21] and proactive [39,3]. When a conflict occurs between 
two transactions, the contention manager determines which trans-
action wins or loses, and then the loosing transaction aborts. Since 

http://dx.doi.org/10.1016/j.bdr.2017.06.004
2214-5796/Published by Elsevier Inc.

http://dx.doi.org/10.1016/j.bdr.2017.06.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/bdr
http://dx.doi.org/10.1016/j.bdr.2017.06.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bdr.2017.06.004&domain=pdf


48 J. Kim / Big Data Research 9 (2017) 47–56

aborted transactions might abort again in the future, reactive sched-
ulers enqueue aborted transactions, serializing their future execu-
tion [11,2,21]. Proactive schedulers take a different strategy. Since it 
is desirable for aborted transactions to not be aborted again when 
re-issued, proactive schedulers abort the loosing transaction with a 
backoff time, which determines how long the transaction is stalled 
before it is re-started [39,3,20]. In the past, (reactive and proactive) 
transactional schedulers have been studied in multiprocessors and 
general distributed systems.

A distributed transaction typically has a longer execution time 
than a multiprocessor transaction, due to communication delays 
that are incurred in requesting and acquiring objects, which in-
creases the likelihood for conflicts and thus degraded perfor-
mance [3]. To boost performance in (multi-version) DTM, a trans-
actional scheduler is therefore compelling to consider, as it effec-
tively stalls contending transactions when conflicts occur. However, 
in MV DTM, reactive and proactive transactional schedulers may 
not be effective. First, MV-STM inherently guarantees commits of 
all read-only transactions [31]. Past transactional schedulers [2,21]
abort loosing read-only transactions due to conflicts and simul-
taneously restart the aborted read-only transactions to maximize 
their parallelism. However, conflicts with read-only transactions 
do not occur in MV-STM due to multiple object versions. Thus, 
the parallelism of read-only transactions cannot be exploited by 
traditional scheduling approaches in MV-STM. Second, a transac-
tion may request multiple objects. However, a conflict occurs and 
is only detected on a single object [4]. Even though other ob-
jects used by the transaction may not be subject to a conflict, 
the transaction is still aborted. Once a transaction is aborted, it 
will suffer from additional communication delays to request and 
retrieve all its objects again in (dataflow) DTM. Due to such de-
lays, determining backoff times for aborted transactions (under 
proactive schedulers) or serializing enqueued-aborted transactions 
(under reactive schedulers) is generally difficult. Particularly, a long 
running write-intensive transaction may be easily exposed to this 
difficulty because of its high abort rate.

We overcome these difficulties by designing a transactional 
scheduler, called partial rollback-based transactional scheduler (or 
PTS). We consider MV-based transactional forwarding algorithm 
(MV-TFA) DTM model [20]: when transactions request and ac-
quire an object (version), events that track the object versions are 
recorded. The events indicating which transaction reads or updates 
an object are used to detect which object is subject to the conflict. 
After a conflict is detected, PTS assigns different backoff times for 
conflicting transactions instead of aborting. If a new object version 
is created and conflicting transactions needing it exist, PTS sends 
the version to the requesting nodes. PTS identifies what write op-
erations have caused the conflict, and the conflicting transaction 
is rolled-back. Thus, PTS focuses on how to protect write-intensive 
transactions against aborting.

We implemented PTS on Infinispan [26], and conducted com-
prehensive experimental studies on no and partial replications. Our 
studies reveal that throughput is improved by up to 2.4× over 
MV-TFA without PTS and 1.3× over a scalable one-copy serializ-
able partial replication protocol (SCORe) [29] in high contention. 
SCORe combines a local MV concurrency control algorithm with 
a distributed logical clock synchronization based on Infinispan. To 
minimize communication delays, SCORe allows read only transac-
tions to commit locally, but does not support any scheduler. PTS 
is the first ever transactional scheduler for MV-STM on in-memory 
data grids and constitutes the paper’s contribution.

The rest of the paper is organized as follows. We overview past 
and related efforts in Section 2 and outline the preliminaries and 
the system model in Section 3. We describe PTS and analyze its 
properties in Section 4. Implementation and experimental studies 
are reported in Section 5 and conclude in Section 6.

2. Related work

Transactional scheduling has been explored in a number of 
multiprocessor STM efforts [12,1,39,11,2]. In [12], Dragojević et al. 
describe an approach that dynamically schedules transactions 
based on their predicted read/write access sets. In [1], Ansari et al. 
discuss the Steal-On-Abort transaction scheduler, which queues 
an aborted transaction behind the non-aborted transaction, and 
thereby prevents the two transactions from conflicting again.

Yoo and Lee present the Adaptive Transaction Scheduler (ATS) 
[39] that adaptively controls the number of concurrent transactions 
based on the contention intensity: when the intensity is below a 
threshold, the transaction begins normally; otherwise, the trans-
action stalls and does not begin until dispatched by the sched-
uler. Dolev et al. present the CAR-STM scheduling approach [11], 
which uses per-core transaction queues and serializes conflicting 
transactions by aborting one and queuing it on the other’s queue, 
preventing future conflicts. CAR-STM pre-assigns transactions with 
high collision probability (application-described) to the same core, 
and thereby minimizes conflicts.

Blake, Dreslinski, and Mudge propose the Proactive Transac-
tional Scheduler in [3]. Their scheme detects hot spots of con-
tention that can degrade performance, and proactively schedules 
affected transactions around the hot spots. Evaluation on the 
STAMP benchmark suite [27] shows their scheduler outperforming 
a backoff-based policy by an average of 85%.

Attiya and Milani present the BIMODAL scheduler [2], which 
targets read-dominated and bimodal (i.e., those with only early-
write and read-only) workloads. BIMODAL alternates between 
“writing epochs” and “reading epochs” during which writing 
and reading transactions are given priority, respectively, ensuring 
greater concurrency for reading transactions. Kim and Ravindran 
extend the BIMODAL scheduler for DTM in [21]. Their scheduler, 
called Bi-interval, groups concurrent requests into read and write 
intervals, and exploits the tradeoff between object moving times 
(incurred in dataflow DTM) and concurrency of reading transac-
tions, yielding high throughput.

Steal-On-Abort, CAR-STM, and BIMODAL enqueue aborted trans-
actions to minimize future conflicts in SV-STM. In contrast, PTS 
only enqueues live transactions that conflict with other transac-
tions. The purpose of enqueuing is to prevent contending transac-
tions from requesting all objects again. Of course, enqueuing live 
transactions may lead to deadlock or livelock. Thus, PTS assigns 
different backoff times for each enqueued live transaction.

ATS and Proactive Transactional Scheduler determine con-
tention intensity and use it for contention management. Unlike 
these schedulers which are designed for multiprocessors, pre-
dicting contention intensity will incur communication delays in 
distributed systems. Thus, PTS collects average running times – 
a history of how long transactions run – to compute a backoff 
time. Unlike multiprocessor STM, two communication delays will 
be incurred to obtain an object, one for requesting an object and 
the other for retrieving it. Enqueuing a live transaction during the 
backoff time saves those communication delays.

ATS assigns backoff times to aborted transactions. The backoff 
time indicates when the aborted transactions restart. If a transac-
tion aborts, the backoff time may not be effective without consid-
ering all objects held by the transaction (if they exist). Unlike ATS, 
PTS gives a live transaction a backoff time indicating when the live 
transaction restarts if a conflict occurs.

It is important to note that, MV-STM has been extensively stud-
ied for multiprocessors and for distributed systems. MV increases 
concurrency by allowing transactions to read older versions of 
shared data, thereby minimizing conflicts and aborts. For example, 
Ramadan et al. present dependency-aware transactional memory 
(DATM) for multiprocessors [32], where transaction execution is 



https://isiarticles.com/article/97433

