
JID:TCS AID:10824 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.180; Prn:5/07/2016; 12:25] P.1 (1-14)

Theoretical Computer Science ••• (••••) •••–•••

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Non-interference and local correctness in transactional 
memory ✩,✩✩

Petr Kuznetsov a,1, Sathya Peri b,∗,2

a Télécom ParisTech, Paris, France
b CSE Dept, IIT Hyderabad, Hyderabad, India

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 April 2014
Received in revised form 25 November 2015
Accepted 15 June 2016
Available online xxxx

Keywords:
Software transactional memory
Correctness criterion
Opacity
Non-interference
Permissiveness

Transactional memory promises to make concurrent programming tractable and efficient 
by allowing the user to assemble sequences of actions in atomic transactions with all-or-
nothing semantics. It is believed that, by its very virtue, transactional memory must ensure 
that all committed transactions constitute a serial execution respecting the real-time order. 
In contrast, aborted or incomplete transactions should not “take effect.” But what does “not 
taking effect” mean exactly?
It seems natural to expect that aborted or incomplete transactions do not appear in the 
global serial execution, and, thus, no committed transaction can be affected by them. 
We investigate another, less obvious, feature of “not taking effect” called non-interference: 
aborted or incomplete transactions should not force any other transaction to abort. In the 
strongest form of non-interference that we explore in this paper, by removing a subset 
of aborted or incomplete transactions from the history, we should not be able to turn an 
aborted transaction into a committed one without violating the correctness criterion.
We show that non-interference is, in a strict sense, not implementable with respect to the 
popular criterion of opacity that requires all transactions (be they committed, aborted or 
incomplete) to witness the same global serial execution. In contrast, when we only require 
local correctness, non-interference is implementable. Informally, a correctness criterion is 
local if it only requires that every transaction can be serialized along with (a subset 
of) the transactions committed before its last event (aborted or incomplete transactions 
ignored). We give a few examples of local correctness properties, including the recently 
proposed criterion of virtual world consistency, and present a simple though efficient 
implementation that satisfies non-interference and local opacity.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Transactional memory (TM) promises to make concurrent programming efficient and tractable. The programmer simply 
represents a sequence of instructions that should appear atomic as a speculative transaction that may either commit or 

✩ A preliminary version of this paper has been published in ICDCN 2014.
✩✩ This work was supported in part by DAAD-IIT Faculty Exchange Program.

* Corresponding author.
E-mail addresses: petr.kuznetsov@telecom-paristech.fr (P. Kuznetsov), sathya_p@iith.ac.in (S. Peri).

1 The author is supported by the Agence Nationale de la Recherche, under grant agreement ANR-14-CE35-0010-01, project DISCMAT.
2 The author is supported in part by NetApp Faculty Fellowship.

http://dx.doi.org/10.1016/j.tcs.2016.06.021
0304-3975/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2016.06.021
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:petr.kuznetsov@telecom-paristech.fr
mailto:sathya_p@iith.ac.in
http://dx.doi.org/10.1016/j.tcs.2016.06.021


JID:TCS AID:10824 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.180; Prn:5/07/2016; 12:25] P.2 (1-14)

2 P. Kuznetsov, S. Peri / Theoretical Computer Science ••• (••••) •••–•••

Fig. 1. An opaque-permissive opaque but not opaque-non-interfering history: T2 forces T1 to abort.

abort. It is usually expected that a TM serializes all committed transactions, i.e., makes them appear as in some sequential 
execution. An implication of this requirement is that no committed transaction can read values written by a transaction that 
is aborted or might abort in the future. Intuitively, this is a desirable property because it does not allow a write performed 
within a transaction to get “visible” as long as there is a chance for the transaction to abort.

But is this all we can do if we do not want aborted or incomplete transactions to “take effect”? We observe that there is 
a more subtle side of the “taking effect” phenomenon that is usually not taken into consideration. An incomplete or aborted 
transaction may cause another transaction to abort. Suppose we have an execution in which an aborted transaction T cannot 
be committed without violating correctness of the execution, but if we remove some incomplete or aborted transactions, 
then T can be committed. This property, originally highlighted in [1], is called non-interference.

Thus, ideally, a TM must “insulate” transactions that are aborted or might abort in the future from producing any effect, 
either by affecting reads of other transactions or by provoking forceful aborts.

Defining non-interference. Consider first non-interference as a characteristics of an implementation. For example, we may say 
that a TM implementation M is non-interfering if removing an aborted or incomplete transaction from a history (a sequence 
of events on the TM interface) of M would still result in a history of M . We observe that many existing TM implementations 
that employ commit-time lock acquisition or version update (e.g., TL2 [2] or NOrec [3]) are non-interfering in this sense. 
Some encounter-time implementations, such as TinySTM [4], are not non-interfering. But restricting ourselves by the set of 
histories of a given implementation, we do not seem to derive any insights about non-interference itself.

This paper rather focuses on non-interference as a characteristics of a correctness criterion, which results in a much 
stronger restriction on implementations. We intend to understand whether this strong notion of non-interference is achiev-
able and at what cost, which we believe to be a challenging theoretical question. For a given correctness criterion P , 
a TM implementation M is P -non-interfering if removing one aborted transaction from any history of M does not allow 
committing another aborted transaction while still preserving P . We observe that P -non-interference produces a subset of 
permissive [5] with respect to P histories. This is not difficult to see if we recall that in a permissive (with respect to P ) 
history, no aborted transaction can be turned into a committed one while still satisfying P .

Therefore, what we end up with is a very strong restriction on the set of histories. In particular, when we focus on 
opaque histories [6,7], we observe that non-interference gives a strict subset of permissive opaque histories. Opacity requires 
that all transactions (be they committed, aborted, or incomplete) constitute a consistent sequential execution in which every 
read returns the latest committed written value. This is a strong requirement, because it expects every transaction (even 
aborted or incomplete) to witness the same sequential execution. Indeed, there exist permissive opaque histories that do 
not provide non-interference: some aborted transactions force other transactions to abort.

For example, consider the history in Fig. 1. Here the very fact that the incomplete operation T2 read the “new” (written 
by T3) value in object x and the “old” (initial) value in object y prevents an updating transaction T1 from committing. 
Suppose that T1 commits. Then T2 can only be serialized (put in the global sequential order) after T3 and before T1, while 
T1 can only be serialized before T3. Thus, we obtain a cycle which prevents any serialization. Therefore, the history does 
not provide opaque-non-interference: by removing T2 we can commit T1 by still allowing a correct serialization T1, T3. But 
the history is permissive with respect to opacity: no transaction aborts without a reason!

This example can be used to show that opaque-non-interference is, in a strict sense, non-implementable. Every opaque 
permissive implementation that guarantees that every transactional operation (read, write, tryCommit or tryAbort) completes 
if it runs in the absence of concurrency (note that it can complete with an abort response), may be brought to the scenario 
above, where the only option for T1 in its last event is abort.

Local correctness. But are there weaker definitions of TM correctness that allow for non-interfering implementations? Intu-
itively, the problem with the history in Fig. 1 is that T2 should be consistent with a global order of all transactions. But what 
if we only expect every transaction T to be consistent locally, i.e., to fit to some serialization composed of the transactions 
that committed before T terminates? This way a transaction does not have to account for transactions that are aborted 
or incomplete at the moment it completes. Consequently, local serializations for different transactions do not have to be 
mutually consistent.

For example, the history in Fig. 1, assuming that T1 commits, is still locally opaque: the local serialization of T2 would 
simply be T3 · T2, while T1 (assuming it commits) and T3 would both be consistent with the serialization T1 · T3.



https://isiarticles.com/article/97543

