
J. Parallel Distrib. Comput. 104 (2017) 73–87

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Enhancing scalability in best-effort hardware transactional memory
systems
Ricardo Quislant ∗, Eladio Gutierrez, Emilio L. Zapata, Oscar Plata
Department of Computer Architecture, University of Malaga, Spain

h i g h l i g h t s

• Hardware irrevocability with overflow anticipation and transaction stalling.
• Two-phase abort to allow certain privileged mode code inside transactions.
• Allow asking for irrevocability if privileged code evicts a transactional block.
• Privileged-aware cache replacement policy to favour transactions over privilege code.
• Evaluation of requester-wins and requester-stalls conflicts resolution policies.

a r t i c l e i n f o

Article history:
Received 10 June 2016
Received in revised form
22 December 2016
Accepted 4 January 2017
Available online 16 January 2017

Keywords:
Hardware transactional memory
Best-effort
Irrevocability
Privileged mode code
Cache replacement policy
Requester-wins
Requester-stalls

a b s t r a c t

Current industry proposals for hardware transactional memory focus on best-effort solutions where
hardware limits are imposed on transactions. These designs can efficiently execute transactions but
they may abort due to different hardware and operating system limitations, with a significant impact
on performance. For instance, transactions cannot survive capacity overflows, exceptions, interrupts,
operating system events like page faults, migrations, context switches, and so on. To deal with these
events, best-effort hardware transactional memory systems usually provide a software fallback path to
execute a non-transactional version of the code.

In this paper we propose hardware implementation solutions to make transactions survive some
of such limitations, in order to improve the performance and scalability of transactional applications
in best-effort systems. First, we propose a hardware irrevocability mechanism that works either when
hardware capacity overflows occur or in high contention scenarios. It anticipates capacity overflows and
reduces the abort count. This mechanism avoids writing a fallback code, simplifying the programming
of the transactional application. Second, we propose a two-phase abort mechanism to support both
the execution of privileged mode code inside transactions and the interaction of this code with the
irrevocability mechanism. Third, we propose a privileged-aware cache replacement policy to reduce
capacity overflows in the presence of privileged code.

We evaluate our proposals with all the benchmarks of the STAMP transactional suite and carry out a
performance comparisonwith a fallback-based hardware transactionalmemory system, after considering
different fallback codes, showing significant performance benefits for requester-wins and requester-stalls
conflict resolution policies.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Transactional Memory (TM) [16] was first presented in 1993
[17] as a non-blocking synchronization mechanism for shared
memory chip multiprocessors (CMPs). TM provides the program-

∗ Corresponding author.
E-mail addresses: quislant@uma.es (R. Quislant), eladio@uma.es (E. Gutierrez),

zapata@uma.es (E.L. Zapata), oplata@uma.es (O. Plata).

merwith the transaction construct that executes the code enclosed
by it atomically and in isolation. The underlying system is in charge
ofmaintaining those transactional propertieswith dedicated hard-
ware and changes to the coherence protocol (hardware TM, or
HTM).

Since Herlihy’s seminal approach there have been several pro-
posals exploring different designs of an HTM system [4,9,15,26],
and many others that have gained insight into the virtualization of
the transactional hardware [4,6,31,37] to support transactions of
any size and duration.

http://dx.doi.org/10.1016/j.jpdc.2017.01.002
0743-7315/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jpdc.2017.01.002
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2017.01.002&domain=pdf
mailto:quislant@uma.es
mailto:eladio@uma.es
mailto:zapata@uma.es
mailto:oplata@uma.es
http://dx.doi.org/10.1016/j.jpdc.2017.01.002


74 R. Quislant et al. / J. Parallel Distrib. Comput. 104 (2017) 73–87

However, it is not until recently that some processor man-
ufacturers have included HTM support in their commercial off-
the-shelf CMPs [7,19,35,38]. Current industry proposals focus on
best-effort solutions (BE-HTM)where hardware limits are imposed
on transactions. These designs can efficiently execute transactions
but theymay abort due to different hardware andoperating system
(OS) limitations, with a significant impact on performance. For in-
stance, transactions cannot survive capacity overflows, exceptions,
interrupts, OS events like page faults, migrations, context switches,
and so on. To deal with these events, BE-HTM systems usually pro-
vide a software fallback path to execute a non-transactional ver-
sion of the code, often comprising a global lock.

In this paper we propose three hardware mechanisms to
help transactions running in BE-HTM systems survive some
hardware and OS limitations and to enhance their performance.
Our proposals are the following:

• A hardware irrevocability mechanism that operates whenever
a transaction aborts a given number of times, either because
of conflicts with other concurrent transactions or due to hard-
ware capacity overflows (a BE-HTM system relies on caches to
store transactional information and a transactional cache block
replacement implies losing such information). Irrevocability
[6,36] is a transactional execution mode that ensures transac-
tion forward progress. We show how this mechanism can be
easily implemented by tailoring the coherence protocol, and
discuss its benefits over a software fallback path in terms of per-
formance and ease of use. We study and evaluate irrevocabil-
ity in the context of eager–eager requester-wins/stalls BE-HTM
systems. Our irrevocability mechanism is able to anticipate a
cache block replacement and to stall other concurrent transac-
tions instead of aborting them.

• We propose a two-phase abort mechanism to support the exe-
cution of privilegedmode codewithin transactions, such as that
of exceptions or interrupts. Under this mechanism, the release
isolation part of the abort (first phase) is separated from the
part of restoring the transaction’s checkpoint (second phase).
The first phase is executed in case the privileged mode code re-
places a transactional block, although the irrevocability mecha-
nism is first tried to prevent the transaction from aborting. The
second phase is executed when the privileged mode code exe-
cution comes to an end. We rely on a transaction-aware OS to
enforce certain invariants that ensures correctness.

• Since privileged mode code may interfere with ongoing trans-
actions by replacing transactional cache blocks thatmight abort
them, we propose a privileged-aware (PA) cache replacement
policy that reduces the number of privileged-mode-accessible
blocks, maximizing the number of blocks devoted to transac-
tions. It proves to work well for the benchmarks that exhibit
more aborts due to privileged mode code cache replacements.

We evaluate our proposals in a simulation environment with
all the benchmarks of the STAMP transactional suite and carry
out a performance comparison with a fallback-based HTM system,
after considering different fallback codes, showing significant
performance benefits for certain benchmarks.

The remainder of the paper is organized as follows. Section 2
describes the baseline architecture design of the BE-HTM system
that we have used to implement our proposals. Section 3 presents
the details of the hardware irrevocability mechanism and its
implementation. In Section 4 we discuss how privileged mode
code can be allowed within transactions. Section 5 describes the
privileged-aware replacement policy to decrease the abort count
due to cache block replacements when running privileged mode
code. In Section 6 we discuss the experimental results obtained
when evaluating our proposals using the Simics/GEMS simulator
and the STAMP benchmark suite. Finally, Section 7 reviews the
related work and Section 8 draws the conclusions.

Fig. 1. Baseline architecture of the BE-HTM system.

2. Baseline BE-HTM architecture

The solutions proposed in this work to reduce the impact
on performance of the limitations inherent to a BE-HTM system
were designed on a baseline architecture similar to that provided
by the state-of-the-art processor manufacturers, such as Intel
Haswell [38] and IBM Power8 [1].

Fig. 1 shows the baseline architecture. The system relies on
the L1 caches to store new transactional values of memory blocks,
while old values are kept into the L2 cache. A pair of read andwrite
transactional bits per L1 cache block marks whether the block was
read or written within a transaction. Such bits can be flash-cleared
on transaction commit and abort. In case of abort, the blockswhose
transactional write bit is set are also invalidated. The cache coher-
ence protocol maintains strong isolation [22] and implements an
eager conflict detection policy. As to the conflict resolution policy,
we consider two of them: (i) Requester-wins, where the request-
ing transaction wins the conflict and the requested one is aborted.
This is the usually implemented policy in BE-HTM systems because
of its simplicity; (ii) Requester-stalls, where the requesting trans-
action is nacked and stalled until the conflict vanishes. The stalled
transaction aborts if it can cause a deadlock cycle because of other
transactions stalling on it, similar to LogTM [26].

Causes of transaction aborts due to hardware/OS limitations
are: a replacement of a transactional block in an L1 cache; an
eviction of an L2 cache block that is marked as transactional in
the L1 cache, due to the inclusion property of the cache coherence
protocol; a change from user mode to privileged mode which can
be caused by a hardware interrupt, a migration, a context change,
a paging event, a system call, . . .mainly, OS events. To ensure
forward progress of concurrent transactions, the user can provide
a fallback code that executes whenever a transaction aborts a
given number of times. We propose an alternative hardware
irrevocability mechanism in Section 3 that entails certain benefits
over the user fallback code.

The cache coherence protocol is a MESI directory protocol that
holds a full bit vector of sharers. An L1 cache miss can cost up
to four hops, although the last one is not in the critical path: a
GET message from the requester to the directory, a FWD (forward)
message from the directory to the L1 cache that owns the block,
a message with the data between L1 caches (from forwarded to
requester), and amessage from the requester to unblock the direc-
tory, which stays in an intermediate state to forbid the access to
the blockwhile themiss is served [33]. The baseline protocol needs
some modifications to support the execution of transactions:
• Backup on first transactional store: If an L1 cache block is in M

state and its write transactional bit is not set, the L1 cache has
to send the data to the L2 cache before a transactional store is
performed. Thisway the L2 cache holds the last old value for the
block.

• Abort on evictions: The replacement of a transactional block
in an L1 cache implies losing track of transactional loads
and stores, which jeopardizes transaction isolation; therefore,
transactions must be aborted on these types of evictions.
Besides, L2 cache block replacements may abort a transaction
because of the inclusion property.



https://isiarticles.com/article/97546

