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a b s t r a c t 

This paper is concerned in the option pricing and portfolio hedging in a discrete time case with the 

proportional transaction costs. Through the Monte Carlo simulations it has been shown that the fractal 

scaling and risk preference of traders have an important influence on the hedging performances in both 

option pricing and portfolio hedging in a discrete time case. In addition, the relation between preference 

of traders and implied volatility frown is discussed. We conclude that the risk preferences of traders 

play an important role in determining the shape of the implied-volatility-frown and the different options 

having the different hedging frequencies is another reason for the implied volatility frown. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Since the publication of the works of Black and Scholes [1] and 

Merton [2] , the interest in option pricing has dramatically in- 

creased. An essential feature of the Black and Scholes as well as 

Merton approaches is that the trading is assumed to make in a 

continuous-time manner so that the price of any option does not 

depend on the time scaling and traders’ risk preferences (scaling- 

free pricing and preference-free pricing). However, in recent years 

many researchers have discovered that a number of financial mar- 

ket data display some complex and nonlinear characters. A series 

of studies have found that many financial market time series ex- 

ist the scaling law [3–13] . Therefore, it has been suggested that 

one should consider the influence of the scaling and preference 

on option pricing and portfolio hedging. In this paper, through the 

Monte Carlo simulations for the independently 10 0 0 sample paths 

we show that the risk preference of traders and the fractal scaling 

[13] as well as the proportional transaction costs play an important 

role in option pricing and portfolio hedging. 

The problem of the option pricing and the portfolio hedging in 

a discrete time case with the proportional transaction costs has 
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been studied by many authors starting with Leland [14] , Boyle and 

Emanuel [15] , Lott [16] , Wilmott [17,18] , up to more recent works 

[19–29] . All those authors [13–29] show that the fractal scaling of 

traders has an important influence on option pricing and portfo- 

lio hedging, but they did not consider the effect of the risk pref- 

erences of traders on the hedging performances in both implied- 

volatility-frown and option pricing. In fact, while there exist the 

proportional transaction costs the markets are incomplete. In those 

cases, the option prices are heavily dependent on the risk pref- 

erences of the traders. In the mean time, many econophysicists 

are also interested in analyzing financial time series through us- 

ing different fractal scaling δt to research the complex structures of 

economic systems. In particular, Mantegna and Stanley [5,6] , Stan- 

ley and Plerou [7] and Stanley et al. [8] introduced the method 

of scaling invariance from complex science into economic systems 

for the first time. Since then, many researches on scaling laws 

in econophysics have taken place. Mandelbrot [3,4] and Mantegna 

and Stanley et al. [5–8] considered the problem of choosing the 

appropriate fractal scaling to analyses financial market data and 

price options. Bouchaud and Potters [9] and Potters et al. [10] . in- 

troduced an asymptotic method to tackle the residual risk and pro- 

posed to find the optimal strategies to price options. In this paper, 

on basis of the points of view of behavioral finance [30, 31] and 

econophysics [3–10,32] we will use the mixed hedging strategy 

[33] to price the options while there exist the proportional trans- 

action costs. 
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This paper is organized as follows. In Section 2 , through the 

mixed hedging strategy X 1 ( t ), a new option pricing formula is ob- 

tained with the proportional transaction costs and we show that 

the proportional transaction costs and the fractal scaling as well 

as the risk preference play an important role in option pricing. In 

Section 3 , the Monte Carlo simulations for the independently 10 0 0 

sample paths are given to show that the mixed hedging strategy 

X 1 ( t ) is an improvement over the Leland hedging and the modi- 

fied Leland hedging in high-frequency trading in the “real world”

as X < S 0 , even if this evidence is not absolutely conclusive. In 

Section 4 , the relation between the risk preference of traders and 

the implied volatility frown is discussed. We conclude that the 

risk preferences of traders play an important role in determining 

the shape of the implied-volatility-frown and the different options 

having the different hedging frequencies is another reason for the 

implied volatility frown. Section 5 concludes. 

2. Option pricing with proportional transaction costs 

In this section a new option pricing formula will be obtained 

while there are the proportional transaction costs. We show that 

the proportional transaction cost parameter k and the fractal scal- 

ing δt as well as the risk preference parameter μ play an important 

role in option pricing while the continuous time trading assump- 

tion is given up. 

Leland [14] has derived a simple model for pricing options in 

the presence of transaction costs. He adopted the delta hedging 

strategy of rehedging at every time interval δt . That is, every δt the 

portfolio is rebalanced, whether or not the asymptotic replication 

error tends to zero in probability. In the proportional transaction 

cost option pricing model, we follow the other usual assumptions 

in the Black–Scholes model but with the following exception. 

(i) The portfolio is revised every δt , where δt is a finite and 

fixed, small time interval. 

(ii) Transaction costs are proportional to the value of the trans- 

action in the underlying. Let k denote the round trip trans- 

action cost per unit dollar of transaction. Suppose υ shares 

are bought ( υ > 0 ) or sold ( υ < 0 ) at the price S , then the 

transaction cost is given by k 
2 | υ| S in either buying or selling. 

The value of the constant k will depend on the individual in- 

vestor. 

(iii) The hedged portfolio has an expected return equal to that 

from an option. This is exactly the same valuation policy as 

earlier on discrete hedging with no transaction costs. 

(iv) In the paper [33] , in order to show that the residual risk and 

trade scaling play an important role in the Black–Scholes op- 

tion pricing model, a mixed hedging strategy X 1 ( t ), i.e., 

X 1 (t) = 

∂C 

∂ S t 
+ 

μδt 

1 + μδt 

∂ 2 C 

∂ S t 
2 

S t (2.1) 

has been proposed to price options in a frictionless financial 

market. Now we assume that traders make use of the mixed 

hedging strategy X 1 ( t ) to price options while there exist pro- 

portional transaction costs. 

(v) Empirical findings [34,35] show that the price of a European 

option is a convex function of the underlying stock price. 

Therefore, we assume that ∂C 
∂ S t 

> 0 , and 

∂ 2 C 

∂ S t 
2 

> 0 . 

In addition, in our model where transaction costs are incurred 

at every time the stock or the bond is traded, the no arbitrage ar- 

gument used by Black and Scholes no longer applies. The prob- 

lem is that due to the infinite variation of the geometric Brownian 

motion, perfect replication incurs an infinite amount of transaction 

costs. 

Now consider a simple financial market model with constant 

coefficients, which consists of a stock and a bond with price dy- 

namics given by 

S t = S 0 e 
μt+ σB t , (2.2) 

and 

D t = D 0 e 
rt , (2.3) 

where μ, σ � = 0, S 0 > 0, r > 0, t ∈ [0, T ], T ∈ R fixed, and { B t } t ∈ [0, T ] 

a standard one dimensional Brownian motion on a complete prob- 

ability space ( �, F t , P ) which is equipped with the P −augmenta- 

tion { F t } t ∈ [0, T ] of the natural Brownian filtration. 

After a small time interval δt , the price changes in the bond and 

in the stock are 

δD t = r D t δt + O 

(
( δt ) 

2 
)
, (2.4) 

δS t = S t 
[
e μδt+ σδB t − 1 

]
= S t 

[
μδt + σδB t + 

σ 2 

2 

( δB t ) 
2 

]
+ G 1 ( δt ) , (2.5) 

E[ δS t ] = S t [ μδt + 

σ 2 δt 

2 

] + E[ G 1 ( δt ) ] , (2.6) 

and 

E[ (δS t ) 
2 ] = S 2 t σ

2 δt + E[ G 2 (δt)] , (2.7) 

where 

E[ G i (δt)] = O 

(
(δt) 

2 
)

i = 1 , 2 . (2.8) 

Let C = C ( t, S t ) be the value of a European call on the above un- 

derlying stock at time t with expiration date T and exercise price X 

and the boundary conditions: 

C(T , S T ) = ( S T − X ) + at t = T , (2.9) 

and 

C(t, 0) = 0 , 

where C ( t, S t ) is assumed to have continuous partial derivatives up 

to order three. 

Consider a replicating portfolio �t with X 1 ( t ) units of the stock 

and X 2 ( t ) units of the bond. The value of the portfolio is given by 

�t = X 1 (t) S t + X 2 (t) D t , (2.10) 

After the time interval δt , the change in the value of the port- 

folio is 

δ�t = X 1 (t) δS t + X 2 (t) δD t − k 

2 

| δX 1 (t) | S t+ δt , (2.11) 

Since C ( t, S t ) is assumed to have continuous partial derivatives 

up to order three, the change in the value of the option is 

δC = 

∂C 

∂t 
δt + 

∂C 

∂ S t 
δS t + 

1 

2 

∂ 2 C 

∂ S t 
2 
(δS t ) 

2 + G 3 (δt) , (2.12) 

where 

E[ G 3 (δt)] = o ( δt ) (2.13) 

Similar to Leland’s argument [14] , if δt is sufficiently small, from 

Eq. (2.1) we have 

δX 1 (t, S t ) = 

∂ X 1 (t, S t ) 

∂ S t 
δS t + 

∂ X 1 (t, S t ) 

∂t 
δt 

+ 

1 

2 

∂ 2 X 1 (t, S t ) 

∂S 2 t 

( δS t ) 
2 + G 4 ( δt ) 
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