Market selection and survival of investment strategies

Rabah Amira, Igor V. Evstigneevb,⁎, Thorsten Hensc, Klaus Reiner Schenk–Hoppéc,d

a CORE, 34 Voie du Roman Pays, 1348 Louvain-la-Neuve, Belgium
b School of Economic Studies, University of Manchester, Oxford Road, Manchester M13 9PL, UK
c Institute for Empirical Research in Economics, University of Zurich, Blümlisalpstrasse 10, 8006 Zürich, Switzerland
d Institute of Economics, University of Copenhagen, Studiestræde 6, DK-1455 Copenhagen K, Denmark

Received 19 June 2003; accepted 7 October 2003
Available online 19 August 2004

Abstract

The paper analyzes the process of market selection of investment strategies in an incomplete market of short-lived assets. In the model under study, asset payoffs depend on exogenous random factors. Market participants use dynamic investment strategies taking account of the available information about current and previous events. It is shown that an investor allocating wealth across the assets according to their conditional expected payoffs eventually accumulates total market wealth, provided the investor’s strategy is asymptotically distinct from the portfolio rule suggested by the Capital Asset Pricing Model (CAPM). This assumption turns out to be essentially necessary for the result.

© 2004 Elsevier B.V. All rights reserved.

JEL classification: D52; D81; D83; G11

Keywords: Evolutionary finance; Portfolio theory; CAPM; Investment strategies; Market selection; Incomplete markets

1. Introduction

It has long been argued that, in competitive environments, market pressures would eventually select those traders who are better adapted to the prevailing conditions. According to

⁎ Corresponding author.

E-mail addresses: amir@core.ucl.ac.be (R. Amir), igor.evstigneev@man.ac.uk (I.V. Evstigneev), thens@iew.unizh.ch (T. Hens), klaus@econ.ku.dk (K.R. Schenk–Hoppé).
the standard paradigm of economic theory, agents maximize preferences or utilities. From
the evolutionary point of view, what matters is not the utility level, but the chances of
survival. The evolutionary principle leads to the consideration of the process of economic
natural selection among the market participants, or among the strategies of behavior they
adopt. This view has been put forward by Alchian (1950), Enke (1951), Penrose (1952) and
pursued by many others.

The purpose of the paper is to elaborate on an evolutionary approach to the study of
investment strategies in financial markets. This work combines ideas from economic theory
and finance. We examine the process of market selection in the framework of incomplete
markets with traders using dynamic investment strategies. In the model under study, it is
supposed that each trader follows a portfolio rule specifying the allocation of wealth across
the available assets at any moment of time and for any history of events. We retain the key
feature of economic equilibrium models where a market-clearing mechanism determines
prices endogenously in every period. However, we depart from individual utility maximiza-
tion. Instead, we assume that trading strategies are compared with each other in terms of
their abilities to survive under market selection, rather than in the conventional terms of
discounted values.

We consider a market with short-lived assets that live only one time period but are iden-
tically reborn every next period. The assets are in positive supply, and their payoffs depend
on the realization of exogenous states of the world described in terms of a homogeneous
finite-state Markov chain. Short sales are ruled out. The focus is on the long-run dynamics
of the distribution of wealth across the investors. Following Epstein and Zin (1989, 1991)
the model prescribes reinvestment of total wealth and thus precludes consumption. This
assumption, in particular, avoids the trade-off between the rate of consumption and the
evolutionary fitness of the trading rule in a market.

In the case where only a complete set of Arrow securities is traded, the states of the world
are independent and identically distributed, and all the traders use only simple portfolio rules
(independent of time and observations), our framework reduces to the model considered by
Blume and Easley (1992, Section 3). They have demonstrated the remarkable role of the
portfolio rule prescribing the investor to distribute wealth between the assets according to
the probability of the state in which the asset pays out—this portfolio rule is often referred
to as “betting one’s beliefs.” Blume and Easley (1992) show that if a trader uses this rule,
whereas all the others use different (simple) portfolio rules, then the trader will eventually
accumulate total market wealth. In other words, the investor will be a single survivor in the
market selection process.

Apparently, the first who stated the principle underlying the rule of “betting one’s beliefs”
was Kelly (1956). He showed (in a different context) that this principle leads to the max-
imization of the expected logarithm of the portfolio growth rate. This idea gave rise to
a large body of research—see, e.g., Breiman (1961), Thorp (1971), Algoet and Cover
(1988), Hakansson and Ziemba (1995). A common feature of these papers is that they study
single-agent problems with exogenous prices. Blume and Easley (1992) considered an equi-
librium model with prices determined endogenously. Nonetheless, due to the completeness
of the market (and the special structure of Arrow securities), their result regarding the rule of
“betting one’s beliefs” can be reduced to the maximization of the expected logarithm of an
appropriately defined relative growth rate. The Blume–Easley approach has been extended
دریافت فوری
متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات