Automated Quality Assessment for Crowdsourced
Test Reports of Mobile Applications

Xin Chen*T, He Jiang*T, Xiaochen Li*T, Tieke Het, Zhenyu Chen?t
*School of Software, Dalian University of Technology, Dalian, China
TKey Laboratory for Ubiquitous Network and Service Software of Liaoning Province, Dalian, China
School of Software, Nanjing University, Nanjing, China
chenxin4391 @mail.dlut.edu.cn, jianghe @dlut.edu.cn, 111989 @mail.dlut.edu.cn
dg1232002 @smail.nju.edu.cn, zychen@nju.edu.cn

Abstract—In crowdsourced mobile application testing, crowd
workers help developers perform testing and submit test reports
for unexpected behaviors. These submitted test reports usually
provide critical information for developers to understand and
reproduce the bugs. However, due to the poor performance of
workers and the inconvenience of editing on mobile devices, the
quality of test reports may vary sharply. At times developers
have to spend a significant portion of their available resources to
handle the low-quality test reports, thus heavily decreasing their
efficiency. In this paper, to help developers predict whether a test
report should be selected for inspection within limited resources,
we propose a new framework named TERQAF to automatically
model the quality of test reports. TERQAF defines a series of
quantifiable indicators to measure the desirable properties of test
reports and aggregates the numerical values of all indicators to
determine the quality of test reports by using step transformation
functions. Experiments conducted over five crowdsourced test
report datasets of mobile applications show that TERQAF can
correctly predict the quality of test reports with accuracy of up to
88.06% and outperform baselines by up to 23.06%. Meanwhile,
the experimental results also demonstrate that the four categories
of measurable indicators have positive impacts on TERQAF in
evaluating the quality of test reports.

Index Terms—crowdsourced testing, test reports, test report
quality, quality indicators, natural language processing

I. INTRODUCTION

Mobile devices grow dramatically and mobile applications
evolve rapidly, posing great challenges to the software test
activities. However, due to the typical characterizes of mobile
devices, such as limited bandwidth, unreliable networks, and
diverse operation systems, traditional testing (e.g., laboratory
testing) for desktop applications and web applications may
be not intrinsically appropriate to a mobile environment [1].
Recently, many companies or organizations tend to crowd-
source their software testing tasks for mobile applications to
an undefined, geographically dispersed large group of online
individuals (namely crowd workers) in a open call form
[2], [3]. Therefore, crowdsourced testing has received wide
attention from both academia and industry [4]—[7]. In contrast
to traditional testing, crowdsourced testing can be performed
anytime and anywhere [8], thus tremendously improving the
testing productivity. Meanwhile, crowdsouced testing recruits
not only professional testers, but also end users for testing
[3]. Developers can gain real feedback information, functional
requirements, and user experiences.

978-1-5386-4969-5/18/$31.00 (©) 2018 IEEE

368

In crowdsourced testing, crowd workers from open plat-
forms help developers perform testing and submit test reports
for abnormal phenomena [4]. A typical test report usually
provides some critical field information, such as environment,
input, description, and screenshot for developers to understand
and fix the bug. One of the most important characteristics is
that crowdsourced testing is strictly limited in time, such as
several days or one week [4]. Thousands of test reports are sent
to developers in a short time and the quantity heavily exceeds
the available resources to inspect them. Meanwhile, due to the
poor performance of workers and the inconvenience of editing
on mobile devices, test reports may differ sharply with respect
to their quality, which seriously affects the understandability
and reproducibility for developers to fix the bugs.

Many studies focus on shortening the total inspection cost
by reducing the quantity of inspected test reports [4], [5], [8],
[9]. However, these studies neglect the impact of the quality
of test reports on the inspection efficiency. High-quality test
reports provide overall information and the contained contents
can be easily understood, developers can reproduce and fix
the bugs within a reasonable amount of time. In contrast, low-
quality test reports often lack of important details and consume
developers much time and efforts, thus heavily decreasing their
efficiency. It is perfect if the quality of test reports can be
reliably measured by automated methods so as to developers
select the high-quality test reports for inspection. Although no
study has been conducted to investigate how to automatically
measure the quality of test reports, some studies around quality
assessment for bug reports and requirement specifications have
thrown light on a practicable direction by defining a set of
indicators to quantify the desirable features or properties of
bug reports and requirement specifications [10]-[13].

In this paper, to help developers predict whether a test report
can be selected to inspect within limited resources, we attempt
to resolve the problem of test report quality assessment by
classifying test reports as either “Good” or “Bad”. We propose
a new framework named TEst Report Quality Assessment
Framework (TERQAF) to automatically model the quality of
test reports. First, Natural Language Processing (NLP) tech-
niques are applied to preprocess test reports. Then, we define
a series of quantifiable indicators to measure the desirable
properties of test reports and determine the corresponding

SANER 2018, Campobasso, ltaly
Technical Research Papers

value of each indictor according to the textual content of each
test report. Finally, we transform the numeric value of a single
indicator into the nominal value (namely Good, Bad) by means
of a step transformation function and aggregate the nominal
values of all indicators to predict the quality of test reports.

To evaluate the effectiveness of TERQAF, we perform five
crowdsourced test tasks for real industrial mobile applications
and collect five datasets with 936 test reports from crowd
workers. Developers have spent about one week to inspect
and evaluate these test reports. With the help of developers,
we form the ground truth for experiments. We employ the
commonly used accuracy as the metric and investigate three
research questions to evaluate the effectiveness of TERQAF
in test report quality assessment. Experimental results show
that TERQAF can achieve 88.06% of accuracy in predicting
the quality of test reports and outperform baselines by up to
23.06%. Meanwhile, the experimental results also demonstrate
that the four categories of measurable indicators have positive
impacts on TERQAF in test report quality assessment.

In this study, we make the following contributions:

1) To the best of our knowledge, this is the first work to
investigate the quality of test reports and resolve the
problem of test report quality assessment.

2) To automatically model the quality of test reports, we
propose a new framework named TERQAF by using
a taxonomy of quantifiable indicators to measure the
desirable properties of test reports.

3) We evaluate TERQAF over five real industrial crowd-
sourced test report datasets of mobile applications. Ex-
perimental results show that TERQAF can accurately
predict the quality of test reports.

The rest of this paper is structured as follows. Section II
details the background and the motivation. In Section III,
we systematically summarize some desirable properties that
an expected test report should meet. Section IV defines a
taxonomy of indicators for the desirable properties. In Section
V, we detail TERQAF for test report quality assessment. The
experimental setup and the experimental results are presented
in Section VI and Section VII, respectively. Section VIII
discusses the threats to validity and Section IX reviews some
related work. Finally, we conclude this study in Section X.

II. BACKGROUND AND MOTIVATION

In this section, we introduce the background of crowdsouced
testing in detail and present several examples as the motivation
for resolving the problem of test report quality assessment.

In crowdsouced testing, companies or organizations are
responsible for preparing software under test and testing tasks
for crowdsouced testing. Workers passing an evaluation select
test tasks according to their mobile devices, perform testing,
and edit test reports for the observed abnormal behaviors [4],
[5]. These test reports are written in natural language together
with some screenshots based on the predefined format. A
typical test report is usually composed of different fields, such
as environment, input, description, and screenshot, some of
which may vary slightly in different projects from different

crowdsourced platforms, but are generally similar in the con-
tent [8], [9]. In our experiments, we perform five crowdsourced
test tasks for mobile applications with our industrial partners
on the Kikbug crowdsourced testing platform'.

Table I arrays several examples of crowdsouced test reports
from the real industrial data. Notably, in our experiments, all
test reports are written in Chinese. In order to facilitate un-
derstanding, we translate them into English. Field environment
is the basic configurations of used mobile devices, including
phone type, operation system, screen resolution, and system
language. Field input lists the concrete test steps which are
well designed by workers in performing testing based on the
actual test requirements. Developers precisely follow these test
steps to reproduce the bugs possibly. Field description contains
the detailed descriptions of bugs and occasionally involves real
user experience. By reading the descriptions, developers can
understand the content and make an initial decision for fixing
the bugs. Field screenshot sometimes provides some necessary
images to capture the system symptoms when the bugs occur.

However, for crowdsourced mobile application testing, test
reports are generally short and uninformative. For example,
TR; in Table I only contains two words which may make
developers confused to understand the bug. Meanwhile, work-
ers do not strictly comply with the given format to write
test reports. They may describe their work details or reveal
system bugs in Field input. For example, the input of TRy
provides the bug description rather than concrete test steps,
thus seriously hampering developers to reproduce the bug. At
times, for saving time or other motivations, workers may report
multiple bugs in the same test report which is called a multi-
bug test report. Generally, multi-bug test reports carry more
natural language information but relatively marginal for each
contained bug. Also, the test steps may be not sufficiently
exact to reproduce each bug. For example, T'R3 is a multi-bug
test report which reveals two distinct software bugs. Lines 1
to 3 detail that the system does not work well to remind users
how to open the downloaded pictures. Line 4 briefs a sharing
problem using only two words. Meanwhile, the test steps are
not clearly distinguished to reproduce the two bugs.

In aggregate, test report inspection and evaluation are a
significant part of mobile application maintenance. However,
the widely varied quality of test reports obviously influences
the efficiency of developers. In particular, low-quality test
reports usually need more time and efforts to understand, thus
some test reports are dealt with extremely slowly or not at all
constrained by the limited available resources. In practice, test
reports usually contain many duplicates. When facing multiple
test reports revealing the same bug, developers should select
the high-quality one for inspection. In this paper, to help
developers predict whether a test report should be selected
to inspect, we attempt to resolve the problem of test report
quality assessment. Inspired by existing studies around quality
assessment for bug reports and requirement specifications, we

Thttp://kikbug.net

369

ISIf)rticles el Y 20 6La5 s 3l OISl ¥
Olpl (pawasd DYl gz 5o Ve 00 Az 5 ddes 36kl Ol ¥/
auass daz 3 Gl Gy V

Wi Ol3a 9 £aoge o I rals 9oy T 55 g OISl V/

s ,a Jol domieo ¥ O, 55l 0lsel v/

ol guae sla oLl Al b ,mml csls p oKl V7

N s ls 5l e i (560 sglils V7

Sl 5,:K8) Kiadigh o Sl (5300 0,00 b 25 ol Sleiiy ¥/

https://isiarticles.com/article/97890

