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a  b  s  t  r  a  c  t

We  consider  predictions  of  the  impact  of climate  warming  on  rice  development  times  in  Sri  Lanka.  The
major  emphasis  is  on  the  uncertainty  of  the  predictions,  and  in  particular  on  the  estimation  of  mean
squared  error  of  prediction.  Three  contributions  to mean  squared  error  are  considered.  The first  is  param-
eter uncertainty  that results  from  model  calibration.  To  take  proper  account  of  the  complex  data  structure,
generalized  least  squares  is  used  to estimate  the  parameters  and  the variance-covariance  matrix  of  the
parameter  estimators.  The  second  contribution  is  model  structure  uncertainty,  which  we  estimate  using
two  different  models.  An  ANOVA  analysis  is  used  to separate  the  contributions  of parameter  and  model
uncertainty  to mean  squared  error.  The  third  contribution  is model  error,  which  is estimated  using
hindcasts.  Mean  squared  error of  prediction  of time  from  emergence  to maturity,  for  baseline  +2 ◦C,
is  estimated  as  108  days2, with  model  error  contributing  86 days2, followed  by  model  structure  uncer-
tainty  which  contributes  15  days2 and  parameter  uncertainty  which  contributes  7  days2. We  also  show
how  prediction  uncertainty  is reduced  if prediction  concerns  development  time  averaged  over years,  or
the difference  in  development  time  between  baseline  and  warmer  temperatures.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Rice is the principal food crop in Sri Lanka, with about 20%of
the population engaged in rice cultivation (Department of census
and statistics, 2012). Global warming trends will impact rice pro-
duction, and have already been found to affect rice phenology and
growth in China (Tao et al., 2006).

Crop models are often the tools of choice for estimating the
impact of climate change on crop development and production
(Masutomi et al., 2009; Matthews, 1995; Parry et al., 2004). Uncer-
tainty information is essential in all prediction studies, but perhaps
especially so when predicting behavior of complex systems such
as climate or crops, where predictions ineluctably have substantial
error (Holzkämper et al., 2015; Tebaldi and Knutti, 2007).
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There have been numerous studies of uncertainty in crop mod-
els, using various different approaches. A fundamental choice is
whether or not to treat the simulated values as random variables.
One common approach is to consider the simulated values as fixed,
ignoring uncertainty in the model equations or parameter values.
One uses agreement of this fixed model with hindcasts in order
to calculate mean squared error or some other measure of agree-
ment with the data (Basso et al., 2016; Bouman and van Laar, 2006;
Timsina and Humphreys, 2006; Wallach et al., 2014; Yang et al.,
2014). The implicit assumption is that the errors of simulated val-
ues based on past data is indicative of the distribution of errors for
new predictions.

An alternative approach is to explicitly consider the model
structure and/or parameters as random variables, with some dis-
tribution. Uncertainty in this case includes uncertainty in the
simulated values. There have been studies where parameter uncer-
tainty is propagated through the model to obtain uncertainty
in simulated values (Aggarwal, 1995). Recently there have been
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several studies where multiple crop models have been applied
using a common protocol, and where the variability between mod-
els is taken as a measure of model uncertainty (Asseng et al., 2013;
Bassu et al., 2014; Li et al., 2015; Rosenzweig et al., 2013). Taking
account of both model and parameter uncertainty in the same study
has not been done for crop models, though there have been studies
of this type with climate models (Monier et al., 2014).

The variability in simulated values due to model structure and
parameter uncertainty does not represent all the uncertainty in
predictions. It ignores the fact that in general even the best model,
calibrated with a large amount of data to eliminate parameter
uncertainty, is not a perfect predictor. That is, there is a model error
term that also contributes to prediction uncertainty. The model
error term is not normally considered in studies that use multi-
crop model ensembles, but it is taken into account in other set-
tings. In standard regression analysis, the mean squared error of
prediction includes both the effect of parameter uncertainty and
the variance of model error (Myers, 2007). In Bayesian regression,
one calculates both the distribution of the parameters and the vari-
ance of residual error (Gelman et al., 2004; Omlin and Reichert,
1999). (Wallach et al., n.d.) propose a framework to quantify pre-
diction which includes parameter uncertainty, model uncertainty,
explanatory variable uncertainty and model error.

Thus in some studies, model structure and model parameters
have been treated as fixed, while in others they have been treated
as random quantities. Treating the model and parameters as fixed
or random implies somewhat different definitions of uncertainty;
uncertainty just in the agreement between simulated and observed
values in the first case, uncertainty also in the simulated values
in the second. Each approach has its advantages and drawbacks.
A major advantage of the random approach is that it allows one
to study how uncertainty varies depending on the quantity being
predicted. One does multiple simulations (using multiple models
and/or parameters for each model) for each specific prediction,
and calculates the simulation variance specifically for that predic-
tion. This is based just on simulations, not on data. In principle one
could also model hindcast errors as a function of covariates, but this
would be based on data, and is usually impractical for crop models
because of the limited amount of data available.

A major difficulty associated with treating the model and
parameters as random variables is that one must specify a distri-
bution for each. As to the distribution of parameter values, if the
parameters are estimated using frequentist estimation, then that
approach furnishes an estimate of the variance-covariance matrix
of the parameter estimators (Nissanka et al., 2015; Seber and Wild,
1989). A Bayesian approach to calibration produces directly the dis-
tribution of the parameters (Gelman et al., 2004; Iizumi et al., 2009;
Wallach et al., 2012). In practice however, crop model calibration is
often done using an ad hoc approach, which does not provide any
information on parameter uncertainty (Ahuja and Ma, 2011). Then
one must rely on expert opinion to obtain parameter uncertainties
(Aggarwal, 1995). If one does use a standard statistical approach,
there is the difficulty of taking the often complex data structure into
account. If there is dependence among model errors that is ignored,
this in general leads to underestimation of parameter uncertainty
(Seber and Wild, 1989).

The objective of this paper is to illustrate an overall approach
to uncertainty estimation that combines several of the meth-
ods described above, which have not previously been employed
together. Our approach treats models and parameters as random
variables, includes model error, takes account of the complex
data structure in estimating parameter uncertainty and takes into
account the effect of averaging or differencing on uncertainty.

We  will specifically consider the problem of predicting devel-
opment times of rice in Sri Lanka for temperatures that are
on average 2 ◦C warmer than current temperatures. This is

approximately the average monthly temperature increase pre-
dicted by an average of multiple GCMs at mid-century for scenario
RCP8.5, for the concerned area of Sri Lanka (Zubair et al., 2015). We
consider just two  models, DSSAT for rice (Alocilja and Ritchie, 1988;
Jones et al., 2003) and APSIM-Oryza (Gaydon et al., 2012a, 2012b).
These are the models that were used in a model intercomparison
study in South Asia organized as part of the AgMIP project (Hillel
and Rosenzweig, 2015).

2. Materials and methods

2.1. The data

The data here are from two sites in Sri Lanka; the Rice Research
and Development Institutes (RRDI) at Batalagoda (7◦32′′ N, 80◦27′′

E), and Mahailluppallam (8◦06′ N, 80◦27′ E). The data are either from
detailed field experiments or from Coordinated Rice Variety Trials
(CRVT), and concern both the maha season (spans approximately
mid-November to February), and the yala season (South-West
monsoon, spans approximately mid-May to September). The rice
variety is Bg300, which is widely used in Sri Lanka. Altogether there
are 27 year-site-season combinations, from the period 2000–2010.

For Batalagoda, the range of maximum temperature (Tmax) in the
weather file (Jan 1, 2000–31 Dec 2010) is 23.4 ◦C to 38.1 ◦C with 80%
of the values between 29.1 ◦C and 33.6 ◦C. The range of minimum
temperatures (Tmin) is between 13.9 ◦C and 28.9 ◦C, with 80% of the
values between 20.9 and 24.9. The values for Mahailluppallam, for
the period Jan 1, 2000–31 Dec 2008, are similar. The range of Tmax

is 23.6 ◦C to 37.8 ◦C, with 80% of the values in the range 29.3 ◦C to
34.6 ◦C. The range of Tmin is 15.4 ◦C to 27.3 ◦C, with 80% of the values
in the range 20.6 ◦C to 25.3 ◦C.

Seeds were soaked for one day until germination began, and
then the germinating seeds were broadcast in the field at a rate
of around 350 plants/m2. After broadcasting, emergence could be
seen in general in three days.

The date of panicle initiation (PI) was  determined by dissecting
the main culm of 5 plants from each plot in order to see if the pani-
cle primordia were visible using a hand-held magnifying glass. The
date of PI was  taken as D-10 days, where D is the date when the
primordia were first visible. Heading date of an individual plant
was defined as the date when the panicle of the main stem first
becomes visible as it comes out of the leaf sheath. Heading date for
the crop was  defined as the first date when 50% heading is observed
in a demarcated area (0.5 m2 or 1 m in a row). To determine head-
ing date, visual observations were made daily around 9.00–10:00
am The day of physiological maturity was only determined in the
detailed experiments. In the CRVT experiments the day of harvest
was recorded, but this coincided closely with physiological matu-
rity. The standard deviations of the replicates for days of heading
or maturity were in the range 0.6–3 days. Recommended Depart-
ment of Agriculture (DOA) management was  followed in all fields.
Further experimental details can be found in (Nissanka et al., 2015).

2.2. The APSIM-Oryza model for rice phenology

The APSIM-Oryza model for rice (Gaydon et al., 2012a; Gaydon
et al., 2012b; Zhang et al., 2004), hereafter referred to as APSIM,
uses the plant routines including the phenology sub model of
ORYZA2000 with the water and nitrogen routines of APSIM.

According to this model the development rate depends on
degree days (DD), calculated from daily Tmin (◦C) and Tmax (◦C)
temperatures. First, hourly temperature is calculated as

Ti = (Tmin + Tmax)/2 + (Tmax − Tmin) × cos (0.2618 × (i − 14))/2 (1)
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