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a b s t r a c t

Reduced-order modelling offers the possibility to study global flow features in cardiovascular networks.
In order to validate these models, previous studies have been conducted in which they compared 3D
computational fluid dynamics simulations with reduced-order simulations. Discrepancies have been
reported between the two methods. The loss of energy at the bifurcations is usually neglected and has
been pointed out as a possible explanation for these discrepancies. We present distributed lumped
models of cerebrovasculatures created automatically from 70 cerebrovascular networks segmented from
3D angiograms. The outflow rate repartitions predicted with and without modelling the energy loss at
the bifurcations are compared against 3D simulations. When neglecting the energy loss at the bifurca-
tions, the flow rates though the anterior cerebral arteries are overestimated by 4.776.8% (error relative
to the inlet flow rate, mean 7 standard deviation), impacting the remaining volume of flow going to the
other vessels. When the energy loss is modelled, this error is dropping to 0.173.2%. Overall, over the
total of 337 outlet vessels, when the energy losses at the bifurcations are not modelled the 95% of
agreement is in the range of 713.5% and is down to 76.5% when the energy losses are considered. With
minimal input and computational resources, the presented method can estimate the outflow rates
reliably. This study constitutes the largest validation of a reduced-order flow model against 3D simula-
tions. The impact of the energy loss at the bifurcations is here demonstrated for cerebrovasculatures but
can be applied to other physiological networks.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In the past decade, 3D image-based simulations have been
employed to characterize global and local blood flow features in
the cardiovascular system (Taylor and Figueroa, 2009). Observa-
tions of the interactions between blood flow and vessels have
opened new possibilities of biomechanical investigations. How-
ever, although 3D simulations allow comprehensive analysis, they
come at a cost. Generating the required discretized models from
medical images implies time-consuming pre-processing opera-
tions, and simulating the time-dependent 3D flows requires non-
negligible time and computational resources.

Reduced-order modelling offers a good compromise between
completeness and cost when only global flow features are of
interest, and so constitute a perfect fit for modelling large cardi-
ovascular networks (van de Vosse and Stergiopulos, 2011). These

models offer multiple possibilities: they can serve as boundary
conditions to effectively close the 3D Navier-Stokes equations
(Formaggia et al., 2001; Liang et al., 2016; Marzo et al., 2011); they
can be used to perform inverse modelling or sensitivity studies
(Pant et al., 2014), to swiftly evaluate the consequences of different
input conditions, pathological or surgical alterations, etc.; and, as
highlighted in the present study, they can provide an important
‘pre-flight’ check to test the physiological plausibility of outflows
for 3D CFD models when commonplace default pressure outlet
boundary conditions are used.

Recurrent questions concern the accuracy of reduced-order model
predictions, and how to validate them. While validation against in-vivo
(Olufsen et al., 2000; Reymond et al., 2009b) or in-vitro (Bessems et al.,
2008; Matthys et al., 2007) measurements is a natural choice, dis-
crepancies between measurements and predictions due to the
assumptions and simplifications of the reduced-order models can be
difficult to differentiate from the inherent uncertainties of the mea-
surements. 3D simulations are here a weapon of choice to isolate the
influence of the assumptions made in reduced-order modelling since
they are designed to mimic the 3D equations. Previous studies have
followed this path and compared reduced-order models and 3D
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simulations in arterial models (Schrauwen et al., 2014; Xiao et al., 2014)
andmore complex geometries such as the cerebrovasculature (Grinberg
et al., 2011; Moore et al., 2005; Reymond et al., 2012).

These studies showed a good agreement between the two model-
ling techniques in the larger vessels where the flow is expected to be
unidirectional and when the geometries remain simple. However,
discrepancies regarding the pressures and flow rates have been
observed in more complex configurations as in the cerebrovasculature
(Grinberg et al., 2011; Moore et al., 2005; Reymond et al., 2012). On
these geometries, one assumption is that part of these discrepancies
arose from the lack of the model taking into account the loss of energy
at the vessel bifurcations. To tackle this question directly, in the present
study, we present a distributed lumped parameter model that incor-
porates a recently-developed approach to handle bifurcation pressure
drops (Mynard and Valen-Sendstad, 2015), and perform a comparative
study of its predictions against 3D simulations. The simulations are
conducted for 70 subjects, using image-based models of their cere-
brovasculature. The purpose of this study is thus twofold: (i) to validate
the prediction of outflow divisions by reduced order models, using a
comprehensive 3D CFD database as the gold standard; and (ii) to
demonstrate, for the first time, the impact of accounting for pressure
losses at bifurcations in reduced order models.

2. Materials and methods

2.1. Reduced order flow model

We consider a network constituted by connected rigid straight vessels bounded
by nodes being inlets, outlets, or bifurcations. In this network, we assume a steady-
state, fully developed, pressure-driven flow with a no-slip boundary condition.
Thus, the Navier-Stokes equations for a Newtonian fluid boil down to the Hagen-
Poiseuille equation, where the flow rate Qk of each vessel k, is proportional to the
pressure gradient along the vessel and the inverse of its resistance:

Qk ¼
ΔPk

Rk

In this study, two types of resistance are considered. For each vessel k, the
hydraulic resistance is taken into account as,

Rh
k ¼

8μLk
πr4k

which is function of the vessel length Lk, its mean radius rk and the dynamic
viscosity of the fluid μ. In addition, for vessels originating from a bifurcation, a
second resistance Rb

k is added to model the pressure drop induced by this geo-
metrical element. The resistance is added in series and is modelled following the
approach of Mynard and Valen-Sendstad (2015) as,

Rb
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ρQ2
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where ρ is the density of the fluid, Qdat and rdat are respectively the flow rate and the
radius of the datum supplier vessel at the network bifurcation. The angle αðdat;kÞ is the
angle between the datum supplier vessel and the considered vessel k, its definition
being detailed in the next subsection. Each segment of the vascular network is thus

discretized as one element modelled as an electric resistance using the described
hydraulic analogy. Each segment has then its own relation with its pressure
dropΔPk , its flow rateQk and its resistance Rk ¼ Rh

k or Rk ¼ Rh
kþRb

k in the case of a
bifurcation. By applying an analogue of Kirchhoff’s current law to satisfy segment-to-
segment mass conservation, the equations for all segments are assembled and result in
a system of algebraic equations. Pressures are prescribed at the outlets, whereas a fixed
flow rate is prescribed at the inlets of the network. This system is solved using the
iterative process implemented in the open source pyNS (Manini et al., 2014).

2.2. Reduced-order representation of the vascular network

The construction of the system of equations depends on the parameters
computed from the considered 3D vascular model. The centerlines are auto-
matically computed thanks to VMTK (Antiga et al., 2008) and divided into a
number of segments, as described in the previous subsection. Each piece of the
centerlines is defined as Ni points in space linked by vectors δi, each point having
an corresponding maximal-inscribed sphere radius computed via the associated
Voronoi diagram, i.e. corresponding to the local minimum lumen radius (Antiga
and Steinman, 2004). The complexity of the model is further reduced by computing
the total segment length Lk and its mean radius rk for each segment k of the
network. The length is computed as

Lk ¼
X
i

δi
�� ���� ��

L2
;

While the mean radius rk is extracted from the sum of the hydraulic resistances
of the segment δi,

rk ¼
L
Ck

� �1
4

;

where

Ck ¼
X
i

δi
r4i

:

Where ri is the radius at the point i of the centerline. Branching angle at arterial
junctions are kept in order to characterize the bifurcation resistance. We associate a
unit vector to the datum supplier segment ndat and, for each segment j of the
junction connected to the supplier, a unit vector nj,k. These unit vectors are
representing the direction of the centerlines directly upstream or downstream of
the bifurcation, as illustrated in Fig. 1 (left figure). This step is automated and based
on objective criteria aimed at generating robust results, c.f. (Antiga and Steinman,
2004) for technical details. For each bifurcation resistance Rb

k, the angle α is defined
as the dot product between the vectors ndat of the upstream vessel and nj,k of the j-
th downstream vessel at the junction.

2.3. Database of 3D CFD models

In order to test the accuracy of our reduced order model against the 3D models
it is designed to approximate, we used the geometries and results from a large CFD
study on middle cerebral artery (MCA) aneurysms. We were provided with 70
segmented multi-branch models extending from the proximal internal carotid
artery (ICA) to distal MCA branches and their boundaries, e.g. flow rates and
pressures at the inlet and outlets.

The lumen geometries were segmented from the 3D angiograms and the
obtained geometries were discretized with tetrahedral meshes using linear ele-
ments, resulting in an average of 4.6 million elements. The Navier–Stokes equations
were solved using standard numerical techniques (Ansys CFX, Ansys, Canonsburg,
U.S.). Pulsatile flow boundary condition was applied at the inlet and time-
dependent pressure boundary conditions were imposed at the outlets. The outlet

Fig. 1. Left: 3D cerebrovascular model, highlighting the bifurcations. The second bifurcation and its vectors are inset. Middle: Same model transformed into a network of
edges and connecting nodes, note the bifurcation segments. Each edge k has the information needed to estimate the pressure drop in the network namely, length, equivalent
radius and vectors at its extremities. Note that the model is flattened automatically by our software, allowing an easier visualization of the low order model next to its 3D
counterpart. Right: the equivalent electrical circuit.
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