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A B S T R A C T

There are a large number of accounts about rapidly declining costs of batteries with potentially transformative
effects, but these accounts often are not based on detailed design and technical information. Using a method
ideally suited for that purpose, we find that when experts are free to assume any battery pack design, a majority
of the cost estimates are consistent with the ranges reported in the literature, although the range is notably
large. However, we also find that 55% of relevant experts’ component-level cost projections are inconsistent
with their total pack-level projections, and 55% of relevant experts’ elicited cost projections are inconsistent
with the cost projections generated by putting their design- and process-level assumptions into our process-
based cost model (PBCM). These results suggest a need for better understanding of the technical assumptions
driving popular consensus regarding future costs. Approaches focusing on technological details first, followed by
non-aggregated and systemic cost estimates while keeping the experts aware of any discrepancies, should they
arise, may result in more accurate forecasts.

1. Introduction

Predicting current and future costs of emerging technologies is
central to identifying viable solutions to energy problems, and yet
existing forecasting methods are fraught with problems. Past ap-
proaches include: (a) expert elicitations; (b) technical cost modeling;
and (c) extrapolation using learning or experience curves. Each of these
approaches, even when pursued in a format consistent with the state-
of-the art, has limitations. For example, in expert elicitation, respon-
dents often rely on cognitive heuristics (Hastie and Dawes, 2010;
Tversky and Kahneman, 1974; Kahneman et al., 1982; Kahneman,
2011), and while a proper protocol can limit the introduction of bias
(Morgan, 2014; Morgan and Henrion, 1990), challenges still remain
(Kahneman, 2011; Morgan, 2014; Henrion and Fischhoff, 1986; Baker
et al., 2015; Anadon et al., 2014; Verdolini et al., 2015). Perhaps most
importantly for the case of estimating future costs, research suggests
that individuals are poor at estimates that are additive in nature, or
where small perturbations have ramifications throughout a system
(Tversky and Koehler, 1994; Ford and Sterman, 1998).

A range of methods, collectively referred to as technical cost
modeling (TCM), have been developed to explore the economic
implications of new technologies (e.g. Daschbach and Apgar 1988;
Weustink et al. 2000) and to estimate production costs for new
products prior to large-scale investment (e.g. LaTrobe-Bateman and
Wild, 2003). While some TCM approaches rely only on past data, TCM
approaches such as process-based cost modeling (PBCM) (Busch and
Field, 1998) involve detailed simulation of the implications of a new
technology for each step of the production process and the interactions
across these steps in the full production system (for instance, the
PBCM used in this study, developed previously by Sakti et al. (2015)
leverages empirical data to simulate the process consequences of
design decisions across 19 different process steps with more two
hundred input parameters). The model combines industry data on
existing products and processes with scientific principles to map
changes in design architecture, material and process to their potential
consequences for industrial-scale production processes, given uncer-
tainty. The benefit of PBCM is that by gathering individual design and
per-step process data, the problem of individuals being poor at making
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estimates that are systematic or additive in nature is avoided. The
downside is that the process of data collection has not been as
extensively vetted and formalized as that of expert elicitation [e.g.
Morgan, 2014; Morgan and Henrion, 1990], and future estimates can
only be as information inputted.

While PBCMs can account for some types of organizational learning
embedded in routines and other tasks (Argote and Epple, 1990) or via
projections of future equipment capabilities, some studies instead
adopt learning-curves to model reductions in cost (or labor hours per
unit) as a consequence of organizational experience (cumulative
production volume), all else being held equal (constant technology,
capital, etc.) (Argote and Epple, 1990; Levitt and March, 1998; Yelle,
1979). Past research has suggested a wide range of organizational
learning curve rates across industries (Dutton and Thomas, 1984;
Rubin et al., 2015), which makes it difficult to know which rates are
appropriate, although a broad range of assumptions could be explored.

Industry-wide experience-curve cost reductions capture any reason
costs decline over time, including task repetition, organizational
learning embedded in routines, capital increases and other forms of
investment, economies of scale, technological advancement, and reg-
ulatory changes (Henderson, 1974). Notably, while experience curves
are used widely in some circles (Nagy et al., 2013; Nykvist and Nillson,
2015), past research has raised significant concerns about whether
there is any underlying empirical regularity or predictive potential in
industry-wide experience curves (Rubin et al., 2015; Rubin, 2004;
Colatat, 2009). Cost reductions from learning and experience may be
small compared to the effects of demand, risk management, research
and development, and knowledge spillovers (Nemet, 2006). Essential
to achieving improved accuracy of forecasts is increased transparency
about the underlying assumptions with respect to the mechanisms
driving cost declines, including regulatory changes, scientific advances,
process improvements, and market changes.

Given the respective weaknesses of expert elicitation and PBCM,
and wide variation in organizational learning curve rates, it may be
fruitful to explore the cost implications of a range of feasible individual

or organizational learning curve rates for individual process-step
PBCM process variables. To this end, we elicit expert insights into
the most likely near-term and longer-term changes in product design
and individual process-step variables – including those where indivi-
dual task-based learning and changes in organizational routines might
be expected and well as changes that might be fueled by scientific or
technological advance. We then combine expert elicitation with PBCM
to understand the difference in perspective each may offer for future
battery costs for plug-in electric vehicles, and assess robustness and
consistency of expert predictions. We demonstrate, despite broad
consensus at the aggregate level when technical details are not
considered, multiple levels of inconsistencies within expert's estimates
once technical details are taken into account.

1.1. Past estimates of the current and future cost of batteries

We focus on the case of batteries for plug-in hybrid and battery
electric vehicles (PHEVs and BEVs). High battery cost is the single
largest economic barrier facing mainstream adoption of plug-in electric
vehicle (Plotkin and Singh, 2009; Kammen et al., 2009). Increased
adoption can reduce gasoline consumption (Sanna, 2005) and green-
house gas (GHG) emissions when the electricity is generated from
clean sources (Samaras, 2008; Michalek et al., 2011). PHEVs use a mix
of gasoline and electricity, and BEVs use only grid electricity. A total of
96,000 EVs were sold in 2013, up 84% since 2012 (Koronowski, 2014),
albeit constituting a mere 0.6% of the total vehicle sales for that year
(Young, 2014).

Price is influenced by the production cost of the underlying
technologies. A producer is unlikely over the long term to sell at prices
below production costs. Many studies estimate battery production
costs. A 2012 McKinsey study reported automotive Li-ion battery pack
production costs in the range of $500–$600/kW h (Hensley et al.,
2009). A 2013 National Academies’ study estimated production cost of
the battery packs in the Nissan Leaf and the Chevy Volt of $500/kW h
at low production volumes (National Research Council, 2013). Costs of

Fig. 1. Summary of available cost estimates of lithium-ion batteries for different vehicular applications (Sakti et al., 2015; Nykvist and Nillson, 2015; Hensley et al., 2009; National
Research Council, 2013, 2010; Boston Consulting Group, 2010; Barnett et al., 2009; Santini et al., 2010; Baker et al., 2010; Anderman, 2010; Plotkin and Singh, 2009; California Air
Resources Board, 2009; Frost and Sullivan, 2009; Kromer and Heywood, 2008; Ton et al., 2008; Kalhammer et al., 2007; Pesaran et al., 2007; Catenacci et al., 2013). The costs were
assumed to be at the pack-level for the nameplate capacity unless otherwise specified in the reports. Wherever ranges were specified, error bars have been used to show the upper and the
lower bounds. For reports with ranges, unless the most probable cost estimate was specified, the average of the lower and the upper cost estimates has been shown as the base estimate.
In the case of McKinsey, the estimates were for the price, which included estimated margins that the automakers would pay. Price estimates have been shown using striped columns and
costs with solid ones. Estimated battery cost estimates for the Chevy Volt (PHEV40) and a Nissan Leaf (BEV73) in 2012 is also shown. Studies that use expert elicitation have been
highlighted with a star. All cost estimates were adjusted to 2015 dollars using GDP deflators for the US (White House, 2015). Figure adapted from Sakti et al. (2015).
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