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A B S T R A C T

Since 2010, over 700,000 small-scale solar photovoltaic (PV) systems have been installed by households in Great
Britain and registered under the feed-in tariff (FiT) scheme. This paper introduces a new agent-based model
which simulates this adoption by considering decision-making of individual households based on household
income, social network, total capital cost of the PV system, and the payback period of the investment, where the
final factor takes into account the economic effect of FiTs. After calibration using Approximate Bayesian
Computation, the model successfully simulates observed cumulative and average capacity installed over the
period 2010–2016 using historically accurate FiTs; setting different tariffs allows investigation of alternative
policy scenarios. Model results show that using simple cost control measures, more installation by October 2016
could have been achieved at lower subsidy cost. The total cost of supporting capacity installed during the period
2010–2016, totalling 2.4 GW, is predicted to be £14 billion, and costs to consumers significantly exceed pre-
dictions. The model is further used to project capacity installed up to 2022 for several PV cost, electricity price,
and FiT policy scenarios, showing that current tariffs are too low to significantly impact adoption, and falling PV
costs are the most important driver of installation.

1. Introduction

Since 2010, feed-in tariffs (FiTs) designed to encourage adoption of
small-scale, decentralised renewable energy technologies have been avail-
able to households, communities, and industrial and commercial organisa-
tions in Great Britain (GB). The majority of FiT-registered installations are
solar photovoltaics (PV), with tariffs paid to installation owners by their
electricity supplier per unit of electricity produced or exported.

The cumulative peak capacity of small-scale (defined throughout
this work as up to 10 kW) PV systems installed with support from the
FiT scheme now exceeds 2 GW (Department for Business, Energy and
Industrial Strategy, 2016; Ofgem, 2016a). By 2016, the total annual
cost of supporting FiT-registered installations (all capacities and tech-
nology types) exceeded £1 billion (Ofgem, 2016b), and costs continue
to rise as the scheme remains open to new registrations while payments
to existing installations remain guaranteed for decades. FiTs are paid by
electricity suppliers, but these costs are ultimately passed on to their

customers. Solar PV is by far the most popular technology supported by
the FiT scheme, making up 99% of the number of registered installa-
tions as of September 2016 (over 770,000 individual installations), the
next most popular technology being wind power at just over 7000 in-
stallations (Ofgem, 2016a). Given the scheme's cost as well as the im-
portance of increasing reliance on renewable energy, a review of the
implementation of the FiT scheme, in terms of historical, current, and
announced future policy, is relevant. Specifically, investigating if FiT
policy encouraged the adoption of PV by households in an effective
manner in the period 2010–2016, and predicting the outcome of future
policy in the short term (up to 2022) can identify issues in the policy's
implementation, and how these pitfalls can be avoided in future. To
quantitatively assess policy effectiveness, this paper uses a new agent-
based model (ABM) constructed to simulate the adoption of small-scale
PV by households in GB.1 While this model focuses on the effect of FiTs,
it also includes other economic factors and the effect of a social network
on adoption decisions.

https://doi.org/10.1016/j.enpol.2018.01.060
Received 5 April 2017; Received in revised form 12 December 2017; Accepted 29 January 2018

⁎ Corresponding author.
E-mail addresses: phoebe.pearce15@imperial.ac.uk (P. Pearce), r.slade@imperial.ac.uk (R. Slade).

1 This work and the model constructed relate specifically to policy in Great Britain, rather than the UK as a whole; while Northern Ireland does offer financial support for renewable
energy, it has a separate policy. This means the model output is scaled to the population of Great Britain rather than the UK. Where relevant (e.g. regional population and load factor
data), data for Great Britain were used, but for other parameters (such as household income and electricity consumption distributions), available data for the UK as a whole was used.
Given the relatively small population of Northern Ireland – currently around 3% of the population of the UK (Office for National Statistics, 2015b) – using data for the UK rather than only
Great Britain does not affect model outcomes significantly.
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This paper first introduces the role of ABMs in modelling energy
systems in Section 2 and background on FiT policy and its outcomes so
far in Section 3. Section 4 outlines model specification and operation,
and results of the model for historical (2010–2016) and future
(2016–2021) scenarios are presented in Sections 5 and 6 respectively,
with conclusions and policy implications discussed in Section 7.

2. The role of ABMs in energy system modelling

Interest in the dynamics of innovation and technology diffusion goes
back some five decades, encompassing both qualitative, explanatory
theories such as Everett Rogers’ Diffusion of Innovations (Rogers, 1962)
and mathematical models for e.g. the spread of technical innovations
(Mansfield, 1961) and consumer durables (Bass, 1969). The first energy
system models for policy, strategy and operational planning were being
developed around the same time (Hoffman and Wood, 1976). Since
then, several extensive, well-established energy system modelling fa-
milies have been developed, such as MARKAL/TIMES (Loulou and
Labriet, 2008) and MESSAGE (Schrattenholzer, 1984). These models,
often described as “bottom-up” models since they explicitly represent
different technologies, use linear programming methods to find the
lowest cost energy system. Another group of models, often referred to as
“top-down” models, represent macroeconomic interactions robustly,
but do not include the level of technological detail present in bottom-up
approaches; these include DICE/RICE (Nordhaus and Boyer, 1999),
GEM-E3 (Capros et al., 2013) and MERGE (Manne et al., 1995). More
recently, versions of MARKAL and MESSAGE linked with macro-eco-
nomic models which take into account feedbacks between the energy
system and other economic sectors have been developed (Manne and
Wene, 1992; Messner and Schrattenholzer, 2000). Generally, bottom-up
and top-down models have produced different results for the cost or
savings caused by moving to a lower-carbon energy system, with
bottom-up models suggesting that moving to efficient, renewable
technologies will lead to cost savings, while top-down models which
endogenise economic drivers (and thus, to some extent, human beha-
viour) do not reproduce these large cost savings (Grubb et al., 1993;
IPCC, 1996).

ABMs provide an intuitive framework to take into account explicit
characteristics of both technology and human behaviour. The basic
modelling elements are agents (which may represent e.g. individuals,
households, or a government agency), and the collective actions of
these agents leads to emergent behaviour. ABMs also address the issue

of control; large-scale optimization models implicitly assume there is
some centralised control over e.g. the energy system, which is often not
the case, especially in the case of small-scale, privately-owned tech-
nologies such as solar PV. ABMs can address one layer of control and
decision-making, focusing on the adoption of a technology by in-
dividuals or small groups (Palmer et al., 2015; Robinson et al., 2013;
Sorda et al., 2013; Zhang and Nuttall, 2011) or can address multiple
levels of agent interaction (e.g. regulation, forward and spot markets,
and the physical load of the electricity systems), such as in the EMCAS
model (Argonne National Laboratory, 2008).

According to Kiesling et al. (2012), ABMs focused on innovation
diffusion can be divided into two broad categories: theoretical models,
using abstract, generic representations of diffusion processes to gain
insight into a particular factor influencing the diffusion process, and
applied models, which often focus on a particular country or region,
with the aim of providing predictions or designing and assessing sup-
port policy. A selection of models in the latter category are summarised
in Table 1. Such small-scale, applied ABMs do not serve the same
purpose as the large-scale models discussed above, but their ability to
endogenise human behaviour may allow useful policy assessment for
specific sectors, or where traditional models disagree.

3. Policy background

3.1. Feed-in tariffs in Great Britain

Great Britain's FiT scheme was set out in the 2008 Energy Act and
took effect from April 2010, supporting electricity generation from
anaerobic digestion, hydro power, solar PV, wind power and small-
scale gas-powered CHP (Parliament of the United Kingdom, 2008) as
part of the UK's climate change mitigation strategy. The FiT scheme is
intended for installations under 5MW and mainly supports small-scale
generation, with the Renewables Obligation (RO) mainly supporting
large-scale generation, although there is some overlap in the technol-
ogies and scales supported. This work only considers the FiT scheme,
since this is by far the most common subsidy type for small-scale, do-
mestic PV installations (see Section 3.2).

3.1.1. Aims of the feed-in tariff
The aims of the FiT scheme as stated by the Department of Energy &

Climate Change (DECC) are (adapted from Nolden, 2015):

Table 1
Previous applications of agent-based models to innovation diffusion problems. This is by no means an exhaustive list; further examples can be found in e.g. Kiesling et al. (2012) and Li
et al. (2015).

Reference Model focus / sector Decision-making strategy Environment & network topology

Iachini et al.
(2015)

Effect of social and economic
factors on adoption of PV in Italy

Multi-criteria utility function: adoption when agent's
threshold utility (depending on household characteristics)
exceeds utility function

Small-world. Agents more likely to be linked to
geographically and socio-economically proximate
agents.

Palmer et al.
(2015)

Effect of support schemes on
adoption of PV in Italy

Multi-criteria utility function: adoption when agent's
threshold utility (depending on household characteristics)
exceeds utility function

Small-world. Agents more likely to be linked to
geographically and socio-economically proximate
agents.

Robinson et al.
(2013)

Spatially-resolved adoption of PV
in Austin, Texas

Theory of planned behaviour Small-world. Agents more likely to be linked to
geographically proximate agents

Schwarz and
Ernst (2009)

Spatially-resolved adoption of
water-saving innovations in
Germany

Two methods, depending on socio-economic group:
deliberate decision and a heuristic (theory of planned
behaviour)

Small-world. Agents more likely to be linked to
geographically and socio-economically proximate
agents.

Sorda et al.
(2013)

Effect of support schemes on
prevalence of biogas CHP in
Germany (spatially-resolved)

Decision-making algorithm considering feedstock and
resource availability, heat demand and the Net Present Value
(NPV) of the investment, based on simple decision rules

Relationships between two types of representative
agents (e.g. banks, local and federal government,
electric utilities) are pre-defined. No social network.

Zhang and Nuttall
(2011)

Effect of policy on diffusion of
smart metering in the UK

Theory of planned behaviour Lattice: interaction with neighbours and random
network

Zhao et al. (2011) Effect of policy on PV adoption in
the USA

Hybrid system dynamics and ABM. In ABM, multi-criteria
utility function: if household's “desire level” (utility function)
exceeds threshold, adoption occurs

None (only consider effects of mass advertising)
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