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A B S T R A C T

A numerical model based on the Reynolds equation to study textured tilting pad thrust bearings considering mass-
conserving cavitation and thermal effects is presented. A non-uniform and adaptive finite volume method is
utilized and two methods are compared and selected regarding their efficiency in handling discontinuities; spe-
cifically placing additional nodes closely around discontinuities and directly incorporating discontinuities in the
discrete system. Multithreading is applied to improve the computational performance and three root-finding
methods to evaluate the bearing equilibrium are compared; namely Newton-Raphson method, Broyden's
method with Sherman-Morrison formula and a continuation approach with fourth-order Runge-Kutta method.
Results from the equivalent untextured bearing are utilized to accelerate the computation of the textured bearing
and results are validated by comparison with CFD data.

1. Introduction

Surface texturing is becoming a promising method for enhancing the
performance of hydrodynamic bearings in terms of increasing the oil film
thickness and reducing the frictional loss for a safer and more efficient
bearing operation. However, successful industrial applications of
textured bearings are still limited. One of the main challenges is the
dependency of optimum texturing parameters on the type of contact and
the operating conditions [1]. A poor texture selection may even lead to a
deterioration of the bearing performance. This makes the design of
optimized texture patterns a challenging task, which generally requires
the utilization of advanced computational models due to the large
number of parameters involved. Hence, a successful application of sur-
face texturing relies to a great degree on fast and robust mathematical
models that allow an accurate evaluation of the impact of surface textures
on the performance of bearings under a wide range of conditions.

The key task in the theoretical analysis of hydrodynamic bearings is
the solution of the Reynolds equation to obtain the pressure field, which
after integration yields the bearing's main performance parameters, such
as load carrying capacity, friction and power loss. While solving the
Reynolds equation is quite straightforward for conventional bearings, a
number of issues are encountered when simulating textured bearings. For
example, texturing can result in the development of multiple cavitation
zones and consequently a mass-conserving mathematical treatment of

cavitation becomes necessary [2,3]. Also, the fine meshes generally
required to capture the complex geometry of textured bearings result in
significantly increased computation times. Furthermore, textures intro-
duce numerous discontinuities in the film thickness distribution, which if
untreated, can lead to considerable discretization errors. One of the most
popular discretization methods in the field of hydrodynamic lubrication
is the finite volume method (FVM) due to its simplicity and mass-
conserving properties. Unlike methods based on the weak solution of
the Reynolds equation, e.g. finite element methods, the FVM is based on
boundary flux approximations, i.e. derivatives at film discontinuities
directly depend on the mesh size. Consequently, discontinuities should
be treated in order to avoid large discretization errors or high compu-
tation times caused by finemeshes. Twoways to deal with discontinuities
in finite difference based approaches are available: A local mesh refine-
ment [4,5] and a direct incorporation of discontinuities in the discrete
system as proposed by Arghir et al. in 2002 [6]. However, these methods
have not been evaluated previously regarding their capability of
decreasing discretization errors or reducing computation times. Despite
the benefits, discontinuities are rarely directly handled in finite differ-
ence based numerical approaches, resulting in unnecessarily fine meshes
and high computation times.

Another key step in the analysis of hydrodynamic bearings is the
evaluation of the bearing equilibrium, i.e. the specific film geometry that
balances the applied load. This generally requires solving the Reynolds
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equation multiple times for different film geometries. Due to the
increased complexity in solving the Reynolds equation for textured
bearings, effective methods for finding the bearing equilibrium are
crucial. While numerous root-finding methods to evaluate the bearing
equilibrium are available, the majority of numerical studies are based on
the Newton-Raphson method due to its simplicity and quadratic
convergence. However, this method requires the determination of the
Jacobian matrix at each iteration and an initial film thickness guess
sufficiently close to the actual solution in order to converge. Other
methods, such as Broyden's method or continuation methods may pro-
vide enhanced stability and computational performance when applied
instead of the Newton-Raphson method or in combination with the
Newton-Raphson method.

The aim of this work was the development of a fast and robust nu-
merical model to analyse the influence of surface texturing on the per-
formance of tilting pad thrust bearings. To allow for parametric studies
and the optimization of texture designs, the model is optimized in terms

of computational speed and robustness. The model is based on a finite
volume discretization of the Reynolds equation while considering mass-
conserving cavitation and thermal effects. Two methods of handling
discontinuities (local mesh refinement and the direct incorporation in the
discrete system) and three different root-finding methods (Newton-
Raphson method, Broyden's method and a continuation method) are
compared and selected based on computation speed and numerical sta-
bility. Computation times are decreased by utilizing results from the
equivalent untextured bearing and results are validated through com-
parison with data from commercial CFD published in literature.

2. The model

2.1. Bearing geometry and film thickness

A point-pivoted tilting pad thrust bearing and details of its pads are
shown in Fig. 1.

Nomenclature

a coefficient for the discrete system (m.s or kg/s)
a coefficient for viscosity temperature relationship
A control volume face dimension (m or rad)
B interface Bernoulli coefficient (Pa)
BP Bernoulli coefficient (kg/s)
b coefficient for the discrete system (m.s)
cp lubricant specific heat (J/kg/K)
D damping parameter
df discontinuity coefficient
ep; ee; et tolerance value for pressure, equilibrium and

temperature solver
F nonlinear system for equilibrium solver
f interpolation factor
G homotopy function
h local film thickness (m)
hp film thickness at pivot (m)
htexture texture depth (m)
ii total number of nodes in radial direction
J Jacobian matrix
JP jump coefficient (kg/s)
jj total number of nodes in circumferential direction
kcon convection parameter
m; n coefficients for viscosity temperature relationship
npad number of pads
nr number of textures in radial direction
nθ number of textures in circumferential direction
p local pressure (Pa)
pcav cavitation pressure (Pa)
Q volumetric flow rate (m3/s)
q mass flow rate (kg/s)
r radial coordinate (m)
ri inner pad radius (m)
ro outer pad radius (m)
rp radial coordinate of pivot (m)
T temperature (�C)
Tf friction torque (Nm)
T�K temperature (�K)
u average fluid velocity (m/s)
w0 applied specific load (MPa)
x solution vector for equilibrium solver
x; y Cartesian coordinates (m)
α relative texture extend in circumferential direction

αr ; αθ pitch and roll angle (rad)
β relative texture extend in radial direction
Γ diffusion coefficient (m.s)
δr radial distance from centre of pressure to pivot (m)
δW difference in load carrying capacity and applied load (N)
δθ circumferential distance from centre of pressure to

pivot (rad)
εp; εe; εt fractional residuals for pressure, equilibrium and

temperature solver
η lubricant dynamic viscosity (Pa.s)
Θ fractional film content
θ circumferential coordinate (rad)
θp circumferential coordinate of pivot (rad)
θpad pad angle (�)
λ homotopy parameter
ν40; ν100 lubricant kinematic viscosity at 40 �C and 100 �C (cSt)
νcSt lubricant kinematic viscosity (cSt)
ξ pressure drop coefficient
Π frictional power loss (W)
ρ lubricant density (kg/m3)
ρr texture density in radial direction
ρθ texture density in circumferential direction
ω rotational speed (1/s)
ωp;ωΘ relaxation parameter for pressure and fractional

film content
D þ pressurized regions
D 0 cavitated regions
F computational domain

Subscripts and superscripts
�;þ value just before and after discontinuity
eff effective quantity
i; j control volume indices
ir quantity at pad inner radius
k iteration number
max maximum
min minimum
opt optimum
out quantity at pad outlet
sup supplied quantity
W ;E; S;N;P

west, east, south, north, central nodal value
w; e; s; n west, east, south, north boundary value
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