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Abstract:

This paper describes the use of spatially-sparse inputs to influence global changes in the behavior
of Dynamic Movement Primitives (DMPs). The dynamics of DMPs are analyzed through
the framework of contraction theory as networked hierarchies of contracting or transversely
contracting systems. Within this framework, sparsely-inhibited rhythmic DMPs (SI-RDMPs) are
introduced to both inhibit or enable rhythmic primitives through spatially-sparse modification
of the DMP dynamics. SI-RDMPs are demonstrated in experiments to manage start-stop
transitions for walking experiments with the MIT Cheetah. New analytical results on the
coupling of oscillators with diverse natural frequencies are also discussed.
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1. INTRODUCTION

There is a growing body of evidence that motor primitives
may form the basis for a rich set of sensorimotor skills in
humans and animals (Mussa-Ivaldi et al., 1994; Bizzi et al.,
1995; Rohrer et al., 2004; Hogan and Sternad, 2012). From
walking to grasping, the composition of primitive attrac-
tors could provide robustness as behaviors are generalized
and recycled from past experience. Primitives may, in a
sense, represent a compression of experience, capturing
accumulations of knowledge that may be drawn on to sim-
plify online control. This use of motor primitive techniques
in biological systems would be well supported by the un-
derlying nature of evolutionary change. Indeed, evolution
necessarily proceeds through the accumulation of stable
intermediate states (Simon, 1962), building upon existing
functional frameworks through stably layered complexity.

The use of dynamic movement primitives (DMPs) (Ijspeert
et al., 2012) has sought to embody these principles for the
development of sensorimotor skills in robotics. Dynamic
movement primitives are systems of coupled ordinary dif-
ferential equations that represent a target attractor land-
scape for robot motion. The attractor landscapes can be
learned through demonstration (Ijspeert et al., 2002) or
crafted through manual design. The landscapes of DMPs
may represent attractors for a wide range of rhythmic and
discrete movements (Schaal, 2006; Pastor et al., 2009).

Rhythmic DMPs are closely related to the mimicry of
biological Central Pattern Generators (CPGs) (Marder
and Bucher, 2001) within robotics (Ijspeert, 2008). A
hallmark of CPGs in biological systems is that a low-
dimensional set of inputs can be used to orchestrate co-
ordinated patterns of high-dimensional oscillatory motor
control signals. Stable oscillations of Andronov-Hopf os-

cillators (Chung and Slotine, 2010) have been employed
for pattern generation in bioinspired control of locomo-
tion in air (Chung and Dorothy, 2010) and water (Seo
et al., 2010). Stable phase oscillators (Ajallooeian et al.,
2013b) have been supplemented with sensorimotor feed-
back to stabilize quadrupedal locomotion (Ajallooeian
et al., 2013a; Barasuol et al., 2013). Across these results,
low-dimensional inputs are capable of smoothly reshaping
high-dimensional target behaviors for dynamic machines.

Despite the popularity of DMP/CPG frameworks, analysis
of couplings between primitive modules has largely been
lacking in the literature. Contraction analysis (Lohmiller
and Slotine, 1998) provides modular stability tools which
may help to guide the architecture of more flexible and
robust DMP/CPG frameworks. A preliminary analysis of
discrete DMPs through contraction theory was provided
in (Perk and Slotine, 2006), with new analysis in this pa-
per using transverse contraction theory (Manchester and
Slotine, 2014b; Tang and Manchester, 2014). Contracting
systems are characterized by an exponential forgetting of
initial conditions, providing a notion of stability without
committing in advance to a particular trajectory. Such a
notion is desirable from a practical standpoint, as success
in situations form grasping a cup to running down a cliff
are hardly characterized by unique solutions.

The composition of primitive contracting systems suggests
a promising approach for robust online synthesis from off-
line knowledge (Lohmiller and Slotine, 1998; Perk and
Slotine, 2006; Slotine and Lohmiller, 2001; Manchester
et al., 2015). As we will see, contracting systems provide
an abstraction of their performance, namely a contrac-
tion metric, contraction rate, and associated contraction
region, which compactly characterize properties and ro-
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bustness of composition. Contraction metrics, which guide
online control, might be learned offline through drawing on
experience, or through evolution, enabling application in
systems beyond the limitations of current control synthe-
sis tools. Experiments in learning stable attractors from
demonstration (Khansari-Zadeh and Billard, 2011) can be
cast as convex problems through a contraction viewpoint
(Ravichandar and Dani, 2015). This suggests that a notion
of motor stability resembling contraction could guide a
form of sensorimotor learning with favorable convergence.

These burgeoning extensions of contraction analysis of-
fer an opportunity to understand and extend seemingly-
complex robot control frameworks. The main contribu-
tions of this paper are to provide an analysis of Dynamic
Movement Primitives (DMPs) within the framework of
contraction and to introduce a new functional tool for
DMPs through spatially-sparse inhibition. Contraction
analysis of DMPs provides new results related to scal-
ing primitives in space through general diffeomorphisms,
on the stability of rhythmic DMPs in general networked
combinations, and robustness to parameter heterogeneity
in coupled oscillators. Aside from using low-dimensional
inputs to shape rhythmic high-dimensional behavior, we
show that DMPs can be globally shaped through spatially-
sparse modification to the DMP vector fields. This exten-
sion, which we call sparsely-inhibited DMPs (SI-DMPs) is
used to manage start/stop transitions for phase oscillators
in locomotion experiments with the MIT Cheetah robot.

The paper is organized as follows. Section 2 presents
DMPs and draws on commonality across varied implemen-
tations in the literature. Section 3 provides preliminaries
on contraction analysis, which are then used to analyze
the stability of DMPs. Section 4 builds on this analysis
with an extension to sparsely inhibit Rhythmic DMPs.
Section 5 presents the validation of these results to inhibit
oscillations that drive locomotion in a walking gait for the
MIT Cheetah robot. A short discussion and concluding
remarks are provided in Section 6.

2. DYNAMIC MOVEMENT PRIMITIVES

Dynamic movement primitives (Ijspeert et al., 2012) are
systems of ordinary differential equations which can be
used to generate target kinematic behaviors for robotic
systems. While there are many implementations of DMPs
within the literature, a single DMP (i.e. not coupled to
any others) is generally structured as a hierarchy of three
separate systems: a reference system, canonical system,
and transformation system (Ijspeert et al., 2012). We begin
by providing examples of these systems in the literature,
and then describe their common general properties.

2.1 Discrete (Point-To-Point) Motion Primitives

Discrete DMPs encode point-to-point motions, shaping
both the behavior of the kinematic targets, as well as
transients along the approach. Letting g represent a goal
configuration, the state (y,7,2) € R? of a point-to-point
DMP may be chosen to evolve as (Ijspeert et al., 2012)

T =k(g—y) — by + f(x) (1)
TE = —0x (2)
where k € RT, b € R* provide spring and damper values
for a desired attractor towards the goal ¢ € R, 7 € RT
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a temporal scaling factor and f(z) a forcing function.
The variables (y,y) encode a position and velocity for
the output of the DMP, while x is a phasing variable
which smoothly decays to zero. The forcing function f(z)
can shape the transient behavior via phased-based forcing
through Gaussian basis functions
_ 22 Qi(@)ws _ (z —c)”
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It is common to learn weights w; for these forcing functions
through demonstration (Ijspeert et al., 2012), with learn-
ing accomplished through least-squares methods. In order
to increase smoothness of the output, reference systems
may be employed to filter external commands, for instance
with an externally provided goal ge.:(t)

g =0g(geat(t) — 9)- (4)
Beyond translating the goal, adjustable attractor land-
scapes through spatial and time-based scaling have been
sought as key features within DMPs (Ijspeert et al., 2012).

Consistent with the literature (Ijspeert et al., 2012) (1)
is called a transformation system while (2) is called a
canonical system. The role of the canonical system is
to provide a notion of phase, while the transformation
system uses the phase to shape the attractor landscape.
Rhythmic primitives generalize this framework through
the inscription of oscillations into the canonical system.

2.2 Rhythmic Motion Primitives

Letting x = (z1,22) € R2, represent a new canonical
system state, a choice for rhythmic DMP dynamics is

Tj=k(g—y) — by + f(x) (5)

Ti = wry+ p(r? — 2t — 23)7 (6)

Ty = —wry + p(r® — 2] — 23)my (7)

The % = f(x) dynamics in (6)-(7) are a stable Andronov-
Hopf oscillator at radius r.' The forcing function f(x)
provides phase-dependent forcing through von Mises bases

>, @i(0(x))wl cos(f —0;) — 1
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where the angle of x denoted 0(x) = atan2(z2, z;). Filters
similar to (4) may be added to smoothly shape references,
such as the nominal center of oscillation g or the oscillation
amplitude r, in response to changes in external reference.

2.8 Commonalities

Across these examples, and across the literature, there is
a great deal of commonality in the varied implementations
of DMPs. As highlighted previously, we can typically
decompose each DMP into three separate subsystems:

(Reference System) (8)
x = fe(x,1) (Canonical System) (9)
y = fy(X,y,I') (10)
where r € R"" the reference state, ro,; € R™ an external

command, x € R" the canonical (phase) state, and y €
R™ the transformed output. Within the categorizations

r= fr (I‘, re:ct)

(Transformation System)

1 This definition differs slightly from previous canonical systems in
polar coordinates (r, ) (Ijspeert et al., 2012). A stable limit cycle for
x simplifies analysis for rhythmic DMPs here.
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