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a b s t r a c t

Wiener system is a block oriented model, having a linear time-invariant dynamic system followed by a
memory-less nonlinearity. To design a stochastic estimator for online estimation of Wiener system of
second order, this paper utilizes differential mean value theorem and the results of stochastic contraction
theory. The asymptotic convergence of proposed estimator is derived by using contraction theory related
to semi-contracting systems. The boundedness and convergence of the parameter and state estimates
have been shown analytically. The introduced method has potentials to estimate accurately states and
parameters of Wiener model simultaneously from the noisy output of the system and unknown structure
of nonlinearity. Numerical simulation of the stochastic estimator is presented to justify the claim by
considering the two examples of the real world system with an additive measurement noise.

& 2017 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The difficulty of Wiener model identification is the interaction
of the linear and nonlinear blocks as shown in Fig. 1. The system
identification task is challenging for Wiener model because the
intermediate signal, y(t) is usually not available for measurement.
Thus identification process has to depend only on observations of
input u(t) and output ( )y tn . A standard procedure to identify the
nonlinear Wiener system is to transform the measured output
signal with the inverse of nonlinearity in order to linearize the
system with the assumptions that the static nonlinearity is known
and invertible. To invert a nonlinear block, a high gain observer
has been used to estimate the states of the system together with
the construction of parameter estimator [1]. The conventional
linearization technique through inversion can destroy the signal to
noise ratio of the data when the measurement noise affects the
output. Thus, recursive parameter estimation is derived from a
parametric Wiener model using prediction error method without
applying inversion of the nonlinearity [2]. The basic idea is that if
the linear block can be reliably identified then the intermediate
signal y(t) recovered, and identification becomes much easier.
Therefore, several algorithms are proposed in the literature to
identifying the linear transfer function of a block oriented Wiener
system [3–7].

While there are several methods for identifying Wiener models
proposed in the literature, the most dominant of these is to

parameterize the linear and the nonlinear blocks [8], and then es-
timate the parameters from data by minimizing an output-error
criterion [9]. A difficulty with this approach is that it cannot handle
the process noise which is disturbing the Wiener model. A wide
range of techniques for estimating the mixed linear and nonlinear
Wiener system is reported in [4,5,10,11]. Recently, Wills and B.
Ninness [12,13] expanded Wiener model in more general structure,
and carried out its benchmark study with commonly used non-
linearities. For the general disturbance case, maximum likelihood
method is efficiently implemented using the implication of Buss-
gang's theorem [14]. The nonlinear static block of preload and dead
zone are appearing in the form of a discontinuous piece-wise linear
function, which can be represented as a linear combination of
known smooth functions (polynomials) [10,15]. In such a case,
identification of the nonlinear block is reduced to estimating un-
known parameters. Recently, auxiliary model identification idea
and hierarchical identification principle are used to identify the
block oriented model by considering the polynomial model for
static nonlinearity [16]. Since the Wiener model blocks are assigned
to model the behavior of specific parts of the real world system,
there is a wide range of its applications which are reported in
[14,17–21,25]. They have been applied to both natural phenomena,
such as the pH control process [17], and the man-made devices like
control valves [18] and the power amplifiers [19–21].

The main purpose of this paper is to design a Wiener estimator
in the form of Itô stochastic differential equations (SDEs) to estimate
states and parameters of a Wiener model from the noisy mea-
surement. To analyze the convergence property of the estimator,
differential mean-value theorem and results of stochastic contrac-
tion theory are used. There are two main factors motivating this
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approach. First is the non-availability of a static nonlinearity
structure of the system in practice. Second is the attraction of sci-
entific contributions of 1) contraction theory in the investigation of
globally exponential convergence of noisy trajectories [22,23] and
2) differential mean value theorem to observer design [24]. The
observer design using differential mean value theorem has the
advantage of wide range of operating condition for a globally
bounded Jacobian system [24]. This is due to the non-convexity of
the associated prediction error criterion. The approach presented
here can provide an effective estimation of Wiener model since the
contraction theory consists of incremental exponential stability
property, and the differential mean value theorem are used to de-
sign unknown gains of a proposed Wiener estimator.

In this paper, we adopt the Lipschitz-like approach as in [26] to
estimate the states and the parameters of a system based on the
continuous observation of its noisy measurement, but the con-
vergence analysis of the estimator has been analyzed using the
stochastic contraction theory. The contraction theory based stability
analysis is defined as an incremental convergence between the two
arbitrary trajectories [27–30]. The exponential stability of certain
nonlinear systems is easy to be shown in contraction theory. Since
the framework of contraction theory works on incremental analysis
of neighboring trajectories, it eliminates the need to know the
equilibrium point of the dynamical system. The selection of a sui-
table Lyapunov function is also not required for the stability analysis
in contraction framework. The approach given in this paper utilizes
differential mean value theorem and the results related to semi-
contracting systems to prove the convergence of the proposed
Wiener estimator. The main contributions of this paper are

1. Stochastic contraction based an estimator is proposed to esti-
mate the states and the parameters of the Wiener model from
the noisy output. Itô SDEs are used for the convergence analysis
of the stochastic estimator.

2. The tuning parameters of Wiener estimator have selected ana-
lytically from the result of the contraction theory based incre-
mental stability analysis. The differential mean value theorem is
utilized to express the nonlinear error dynamics as a convex
combination of known matrices with time varying coefficients.

The rest of the paper is organized as follows. The problem for-
mulation is described in Section 2. To prove the convergence
analysis of the proposed estimator, mean value theorem for a
bounded Jacobian system and some useful results related to the
stochastic contraction theory are also described in Section 2.
Numerical results are presented in Section 3 to justify the claim
of the Wiener estimator and Section 4 gives the conclusions.

2. Problem formulation

Consider a nonlinear dynamical system of the form

( )̇ = ( )x f x t, 1

where ( ) ∈x t n is a state vector and   × →f : n n is a con-
tinuously differentiable nonlinear function. A stochastically

perturbed system of the nominal system (1) represented by an Itô
stochastic differential equation (SDE) with the measurement
equation is given by
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The existence and uniqueness of a solution to (2) are realted to the
following conditions (p. 106, [31])
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Where   × → ×B: n n m is a matrix-valued function, ( ) ∈y t m

is the measurement,   ( ) × →h x t, : n m, s is the noise intensity
and zero mean m dimensional white noise is considered as mea-
surement noise ν( )t which is defined as ν= ( )dW t dt , where W is
standard m dimensional Wiener process.

2.1. Stochastic contraction theory

The basic results on stochastic contraction theory is stated
here.1 For this purpose, the stochastic observer for estimating the
states of system (2) can be written as

( ) σ^ = (^ ) + (^ ) ( ) − (^ ) + (^ ) ( )dx f x t dt x t y x t y x t dt x t dW, G , , , G , 4

where (^ )x tG , is the gain of the observer. The following assump-
tions are made to explain the stochastic contraction theory.

Assumption 1. Noise free version of the stochastic observer (4) is
contracting in the identity metric, with contraction rate λ.
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where λ ( ).max is the maximum eigenvalue of ( ). .

Assumption 2.
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Lemma 1 (stochastic contraction [22]). If Assumptions 1 and 2 are
true, then estimated trajectories of the stochastic observer (4) from a
noisy measurement exponentially converge to the trajectories of (2)
with convergence rate λ within a bound of
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C
2
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Proof. Refer to [22].

Remark 1. The construction of stochastic observer is possible for
the stochastic system if its noise free part is contracting, and the
gain (^ )x tG , of this observer can be obtained from the Assumptions
1 and 2. The estimation error of the stochastic observer is upper
bounded by a constant of

λ
C
2
, which is a function of the noise

Fig. 1. Block diagram of the Wiener model, the input u(t) and the output yn(t) are
measurable, but not the intermediate signal y(t). The static nonlinearity is assumed
to be memory-less.

1 Basics of stochastic contraction theory are stated in appendix for more clarity.
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