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a b s t r a c t

This paper considers the robust distributed model predictive control (MPC) of a group of dynamically
decoupled nonlinear systems cooperating via the cost function subject to control constraints. Inspired
by the contraction theory, we develop the robust distributed MPC scheme assuming that the dynamics
of the cooperating systems satisfy the contraction property (they are contracting in a tube centered
around a nominal state trajectory). Compared to conventional robust distributed MPC which uses the
Lipschitz continuity property, the proposed method features the following aspects: (1) it can tolerate
larger disturbances; and (2) it is feasible for a larger prediction horizon and could enlarge the feasible
region accordingly. The paper evaluates the maximum disturbance which the nonlinear system can
tolerate when controlled using the proposed method and derives sufficient conditions for the recursive
feasibility of the optimization and for the practical stability of the closed-loop system. The effectiveness
of the proposed method is illustrated using a simulation example.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Cooperative control has been implemented in applications
ranging from multi-vehicle systems [1], large-scale chemical sys-
tems [2], transportation systems [3], energy systems [4,5], and
so on. However, state and control constraints are ubiquitous in
physical systems and should be accounted for in the controller
design.Model predictive control (MPC) is one of the few techniques
that can explicitly handle such constraints. A direct implementa-
tion of MPC in cooperative control leads to centralized MPC [6–8].
Sometimes, centralized MPC has limited practical value because
of its computational complexity and communication constraints.
In such cases, decentralized MPC strategy is a natural choice. In
decentralized MPC, each subsystem designs its own controller
without considering the dynamics of other subsystems. As shown
in [9], the performance degrades or even instability may arise
when the couplings among subsystems are strong. Alternatively,
distributed MPC can be adopted to make use of the neighbors’
information.

In distributed MPC, each subsystem exchanges information
with its neighbors (a subset of the other subsystems), and solves
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a local optimization which incorporates the state constraints, the
control constraints and the neighbors’ information. Compared to
centralized MPC, distributed MPC has: (1) reduced computational
complexity because it distributes an overall large-scale optimiza-
tion into a set of small-scale optimizations; (2) smaller commu-
nication burden, because each subsystem only needs to exchange
information with its neighbors, instead of with all other subsys-
tems. However, the recursive feasibility and closed-loop stability
results developed for centralized MPC cannot be simply extended
to the distributed MPC setting.

Distributed MPC strategies have been developed both for dy-
namically coupled subsystems and for dynamically decoupled sub-
systems. In the following, the distributed MPC of dynamically
decoupled subsystems, which is pertaining to the problem inves-
tigated in this paper, is reviewed.

In distributed MPC of dynamically decoupled subsystems, the
cooperation among the subsystems is achieved via coupling state
and/or control constraints and/or coupling cost function. When
the coupling is implemented through state and/or control con-
straints, the main challenge is on how to satisfy the constraints.
Oneway to guarantee recursive feasibility and closed-loop stability
is to solve the local optimization associated with each subsystem
sequentially [10–12]. Another technique is to utilize tightening
constraints [13,14], i.e., to design robust positively invariant tubes
around the ideal trajectory, and then to employ the feedback
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control to satisfy the coupling constraints. When the coupling is
implemented through a coupled cost function [15,16], the recur-
sive feasibility of the optimization can be guaranteed [15] if each
subsystem does not deviate too much from its previously pre-
dicted state trajectory. The algorithm in [15] is implemented in a
leader–follower stabilizing formation of unmanned aerial vehicles
(UAVs) [17]. The distributed MPC for systems coupled through
state constraints and cost function [18] simultaneously requires
small enough prediction error and fast updating frequency. For
systems satisfying the controllability condition [19], an easily-
verifiable constraint can be imposed in the optimization solved by
each subsystem. A recent novel distributed MPC [20] introduces a
robustness constraint in the optimization. However, all the afore-
mentioned algorithms assume and use the Lipschitz continuity of
the system dynamics [15,17,20,21] to evaluate an upper bound
on the deviation of the actual state trajectory from the predicted
state trajectory, so they compute an upper bound which grows
exponentially with the prediction horizon. Consequently, they can
offer recursive feasibility and closed-loop stability guarantees only
for small disturbances and for short prediction horizon, essentially
leading to conservative results.

It is expected that MPC strategies which use additional prop-
erties of the system dynamics can have better performance for
certain classes of nonlinear systems than general MPC methods
which exploit only Lipschitz continuity. This paper exploits the
contractive dynamics of such a class of nonlinear systems. The
contraction theory has been firstly introduced in [22] inspired by
fluid mechanics, and has been extended to nonlinear distributed
systems [23], resetting hybrid systems [24] and stochastic in-
cremental systems [25]. The application of contraction theory to
mechanical systems can be found in [26] and to networked sys-
tems in [27]. Centralized MPC using contraction theory has been
designed in [28]. For the class of nonlinear systems comprising sub-
systems with decoupled control constraints, and the dynamics of
each subsystem are decoupled and contracting in tube-like regions
along their nominal state trajectories, this paper designs a novel
robust distributed MPC strategy with cooperative cost function,
which exploits the contraction property within these tubes. The
contributions of this paper are three-fold.

- It derives an upper bound on the deviation between the
actual and the nominal state trajectories when both trajec-
tories are in the contraction region.

- It establishes sufficient conditions for the recursive feasi-
bility of the local optimization solved by each subsystem,
namely the nominal and the actual state trajectories should
lie in the contraction region such that the contraction prop-
erty can be exploited. Then, the feasibility of the optimiza-
tion at time tk indicates the feasibility of the optimization at
tk+1.

- It shows that the recursive feasibility of all subsystem op-
timizations is sufficient for the closed-loop stability of the
overall system. Also, the proof of the feasibility and stability
exploits the contraction property rather than the decreasing
of the cost function, which allows a stronger cooperation
among subsystems.

The remainder of this paper is organized as follows. Section 2
presents the distributed MPC problem formulation for the large-
scale nonlinear systems and derives the upper bound of the de-
viation between the actual and predicted state trajectories for
each subsystem. Section 3 establishes sufficient conditions for
the recursive feasibility of the local optimization solved by each
subsystem. Provided that all local optimizations are recursively
feasible, Section 4 shows that the closed-loop system is practically
stable, i.e., the closed-loop system state enters a neighboring set of
the origin in finite time. Section 5 illustrates the proposed robust

distributed MPC algorithm using a simulation example. Section 6
summarizes the work presented in this paper.

The notations used in this paper are standard. The superscript
‘‘T’’ stands for matrix transposition; Rn denotes the n-dimensional
Euclidean space; for a matrix P , P > 0 (P ≥ 0) means that P is real
symmetric positive definite (positive semidefinite); for a vector
x ∈ Rn, ∥x∥2 is its Euclidean norm and ∥x∥P =

√
xTPx is its P-norm.

2. Problem formulation and preliminaries

Consider a system consisting of S decoupled nonlinear subsys-
tems Ai, i = 1, 2, . . . , S. The dynamics of each subsystem Ai are

ẋi(t) = fi(xi(t), ui(t)) + ωi(t), xi(t0) = x0i , t ≥ 0, (1)

where xi(t) ∈ Rni is the subsystem state, ui(t) ∈ Rmi is the
constrained control input and ωi(t) ∈ Wi ⊂ Rni is the bounded
additive disturbance satisfying ρmax = maxt∥ωi(t)∥M , where M >
0will be defined in Lemma 1. fi is continuous. The sets Ui andWi, in
which the control signal and the additive disturbance are bounded,
include the respective origins in their interiors.

The nominal dynamics of the subsystem Ai in (1) are

˙̄xi(t) = fi(x̄i(t), ūi(t)). (2)

Let the origin be an equilibrium point of the nominal dynamics
in (2). The following standard assumption [15,29–31] characterizes
the dynamical property of each subsystem around the origin.

Assumption 1. The linearization around the origin of the nominal
dynamics in (2) is stabilizable, i.e., matrices Ki with appropriate
dimensions exist such that (Ai +BiKi) are stable for i = 1, 2, . . . , S,
where Ai =

∂ fi
∂ x̄i

|(0,0) and Bi =
∂ fi
∂ ūi

|(0,0).

Assumption 1 indicates that, around the origin, a stabilizing
controller exists for each nominal dynamics in (2). Specifically, it
leads to the following lemma [32].

Lemma 1. A control positively invariant set Ωαi = {x : ∥x∥M ≤

αi,M > 0} can be constructed for the dynamics in (2) with a feasible
control signal ūi(t) = Kix̄i(t).

Instead of using the Lipschitz continuity property of the dy-
namics in (1) and (2) as in [15,20,33], this paper exploits the
contraction property (Definition 1 in Appendix) satisfied by a class
of nonlinear systems. The following assumption characterizes the
class of nonlinear systems for which this paper designs a novel
robust distributed MPC strategy.

Assumption 2. For the nominal dynamics in (2) with the initial
state xi(t0), there exist a feasible control signal ūi(t0 + τ ; t0), τ ∈

[0, T ] and a tube-like region Θl =: {x̄ : ∥x̄ − x̄i(s; t0)∥M ≤ l, ∃s ∈

[t0, t0 + T ]} such that: (1) the control signal steers the nominal dy-
namics in (2) to the positively invariant setΩαi along the trajectory
˙̄xi(t0 + τ ; t0) = fi(x̄i(t0 + τ ; t0), ūi(t0 + τ ; t0)), x̄i(t0; t0) = xi(t0);
(2) Denote ∂ fi

∂ x̃i(s;t0)
:=

∂ fi
∂ x̃i(s;t0)

|(x̃i(s;t0),ūi(s;t0)), where x̃i(s; t0) satisfies
∥x̃i(s; t0) − x̄i(s; t0)∥M ≤ l. The following inequality holds

∂ fi
∂ x̃i(s; t0)

T

M + M
∂ fi

∂ x̃i(s; t0)
≤ −βM, s ∈ [t0, t0 + T ] (3)

where β > 0, l > 0, and Ωαi , M are given in Lemma 1.

Assumption 2 indicates that, around the state trajectory x̄i(t0 +

τ ; t0), τ ∈ [0, T ], there exists a tube-like region within which
Inequality (3) holds. Furthermore, if Assumption 2 holds, then
based on [22] (see Theorem 3 in Appendix), any nominal state tra-
jectory starting in the tube Θl remains in this tube and converges
exponentially to x̄i(t0 + τ ; t0).
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