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a  b  s  t  r  a  c  t

This study  focuses  on  the  inference  of characteristic  data  from  a data  set of  507 non-residential  buildings.
A  two-step  framework  is  presented  that  extracts  statistical,  model-based,  and pattern-based  behavior.
The  goal  of the  framework  is  to  reduce  the  expert  intervention  needed  to  utilize measured  raw  data
in  order  to  infer  information  such  as building  use type,  performance  class,  and  operational  behavior.
The  first  step  is  temporal  feature  extraction,  which  utilizes  a  library  of  data  mining  techniques  to filter
various  phenomenon  from  the  raw  data.  This  step  transforms  quantitative  raw  data  into  qualitative  cat-
egories  that  are  presented  in  heat  map  visualizations  for  interpretation.  In the  second  step,  a  random
forest  classification  model  is tested  for accuracy  in predicting  primary  space  use,  magnitude  of  energy
consumption,  and  type  of  operational  strategy  using  the  generated  features.  The results  show  that  pre-
dictions  with  these  methods  are  45.6%  more  accurate  for primary  building  use  type, 24.3%  more  accurate
for  performance  class,  and  63.6%  more  accurate  for building  operations  type  as  compared  to  baselines.

©  2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The built and urban environments have a significant impact on
resource consumption and greenhouse gas emissions in the world.
The United States is the world’s second-largest energy consumer,
and buildings there account for 41% of energy consumed.1 The most
extensive meta-analysis thus far of non-residential existing build-
ings showed a median opportunity of 16% energy savings potential
by using cost-effective measures to remedy performance deficien-
cies [1]. Simply stated, roughly 6% of the energy consumed in the
U.S. could be easily mitigated – a figure that would eventually grow
to an annual energy savings potential of $30 billion and 340 mega-
tons of CO2 by the year 2030. Beyond saving energy, money and
mitigating carbon, the impact of building performance improve-
ment also extends to the health, comfort and satisfaction of the
people who use buildings.
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1 As of 2014, according to http://www.eia.gov/.

It is mysterious that these performance improvements are not
rapidly being identified and implemented on a massive scale across
the worlds building stock given the incentives and amount of
research focused on building optimization in the fields of Architec-
ture, Engineering and Computer Science. A comprehensive study
of building performance analysis was completed by the California
Commissioning Collaborative (CACx) to characterize the technol-
ogy, market, and research landscape in the United States. Three of
the key tasks in this project focused on establishing the state of
the art [2], characterizing available tools and the barriers to adop-
tion [3], and developing standard performance metrics [4]. These
reports were accomplished through investigation of the available
tools and technologies on the market as well as discussions and sur-
veys with building operators and engineers. The common theme
amongst the interviews and case studies was the lack of time and
expertise on the part of the dedicated operations professionals. The
findings showed that installation time and cost was driven by the
need for an engineer to develop a full understanding of the building
and systems. These barriers reduce the implementation of perfor-
mance improvements.

From these studies, it becomes apparent that the biggest barrier
to achieving performance improvement in buildings is scalability.
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Architecture is a discipline founded with aesthetic creativity as a
core tenet. Frank Lloyd Wright once stated, “The mother art is archi-
tecture. Without an architecture of our own, we have no soul of
our civilization.” Designers rightfully strive for artistic and mean-
ingful creations; this phenomenon results in buildings with not
only distinctive aesthetics but also unique energy systems design,
installation practices and different levels of organization within
the data-creating components. This paper shows that an emerg-
ing mass of data from the built environment can facilitate better
characterization of buildings by through automation of meta-data
extraction. These data are temporal sensor measurements from
performance measurement systems.

1.1. Growth of raw temporal data sources in the built
environment

As entities of analysis, buildings are less on the level of a typi-
cal mass-produced manufactured device in which each unit is the
same in its components and functionality; and more on the level of
customers of business, entities that are similar and yet have many
nuances. Conventional mechanistic or model-based approaches,
typically borrowed from manufacturing, have been the status quo
in building performance research. As previously discussed, scalabil-
ity among the heterogeneous building stock is a significant barrier
to these approaches. More appropriate means of analysis lies in
statistical learning techniques more often found in the medical,
pharmaceutical and customer acquisition domains. These meth-
ods rely on extracting information and correlating patterns from
large empirical data sets. The strength of these techniques is in their
robustness and automation of implementation – concepts explicitly
necessary to meet the challenges outlined.

This type of research on buildings would have been difficult even
a few years ago. The creation and consolidation of measured sensor
sources from the built environment and its occupants is occur-
ring on an unprecedented scale. The Green Button Ecosystem now
enables the easy extraction of performance data from over 60 mil-
lion buildings.2 Advanced metering infrastructure (AMI), or smart
meters, have been installed on over 58.5 million buildings in the
US alone.3 A recent press release from the White House summa-
rizes the impact of utilities and cities in unlocking these data [5].
It announces that 18 power utilities, serving more than 2.6 million
customers, will provide detailed energy data by 2017. This study
also suggests that such accessibility will enable improvement of
energy performance in buildings by 20% by 2020. A vast majority
of these raw data being generated are sub-hourly temporal data
from meters and sensors.

1.2. Previous work

A significant amount of work has been undertaken in the field
of building characterization using measured meter data. A com-
prehensive review of unsupervised learning techniques for various
portfolio analysis and smart meter data was recently completed
that includes much of the previous work in this area [6]. The key
studies in the field of building characterization often deal with seg-
mentation of large numbers of buildings, usually within the realm
of smart meter analytics. Customer segmentation has been stud-
ied using various extracted temporal features from smart meter
data for targeting programs [7–10]. Feature-based clustering of
time-series performance data from building is another key field
that precedes the current work. This field seeks to group vari-
ous types of buildings or meters into similar clusters for analysis

2 According to http://www.greenbuttondata.org/.
3 As of 2014, according to http://www.eia.gov/tools/faqs/faq.cfm?id=108&t=3.

[11–18]. Various studies have looked at classification of building
with various objectives using temporal meter data as a source of
features [19–21,16,22]. Several other studies have extracted tem-
poral features that enhance the ability to forecast consumption
[23–25]. Several studies have analyzed larger than usual datasets
from devices such as water heaters [26] and retrofit analysis at the
city scale [27].

1.3. A framework for automated characterization of large
numbers of non-residential buildings

This paper discusses a framework to investigate which charac-
teristics of whole building electrical meter data are most indicative
of various meta-data about buildings among large collections of
commercial buildings. This structure is designed to screen electri-
cal meter data for insight on the path towards deeper data analysis.
The screening nature of the process is motivated by the scala-
bility challenges previously outlined. An initial component of the
methodology was  a series of case study interviews and data col-
lection processes to survey field data from numerous buildings
around the world. A significant portion of this work was com-
pleted as part of a Ph.D. dissertation entitled “Screening Meter Data:
Characterization of Temporal Energy Data from Large Groups of
Non-Residential Buildings” [28].

The contributions of this study are related to its development
and testing of a library of temporal machine learning features
within the domain of non-residential buildings. To the author’s
best knowledge, no previous study has taken such a large num-
ber of buildings (507) and applied temporal feature engineering
approaches from such a wide range of sources. Temporal features
are extracted using techniques such as Seasonal Decomposition of
Time Series by Loess (STL) and Symbolic Aggregate approXima-
tion (SAX) using Vector Space Models (VSM) that have never been
applied to electrical meter data from buildings. This study is also
unique in that the objective is prediction of meta-data about build-
ings. This target is related to the contemporary challenge of large,
raw temporal datasets from thousands of buildings with a signif-
icant amount of missing information; such is the case with large
campuses, portfolios and utility-scale smart meter implementa-
tions.

2. Methodology

A two-step process is presented as a means of extracting knowl-
edge from whole building electrical meters. Fig. 1 illustrates the
intermediate steps in each of the phases. The first step is to create
temporal features that produce quantitative data to describe var-
ious phenomenon occurring in the raw temporal data. This action
is intended to transform the data into a more human-interpretable
format and visualize the general patterns in the data. In this step,
the data are extracted, cleaned, and processed with a library of tem-
poral feature extraction techniques to differentiate various types
of behavior. These features are visualized using an aggregate heat
map  format that can be evaluated according to expert intuition,
comparison with design intent metrics, or with outliers detection.

The second step is focused on the characterization of buildings
using the temporal features according to several objectives. This
process allows an analyst to understand the impact each feature
has upon the discrimination of each objective. Five test objectives
are implemented in this study: principal building use, performance
class, and operations strategy. One of the key outputs of this super-
vised learning process is the detection and discussion of what input
features are most important in predicting the various classes. This
approach gives exploratory insight into what features are impor-
tant in determining various characteristics of a particular building
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