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a b s t r a c t

To identify and quantitatively evaluate complex latent factors controlling groundwater level (GWL) fluc-
tuations in a riverside alluvial aquifer influenced by barrage construction, we developed the combined
use of dynamic factor analysis (DFA) and wavelet analysis (WA). Time series data of GWL, river water
level and precipitation were collected for 3 years (July 2012 to June 2015) from an alluvial aquifer under-
neath an agricultural area of the Nakdong river basin, South Korea. Based on the wavelet coefficients of
the final approximation, the GWL data was clustered into three groups (WCG1 to WCG3). Two dynamic
factors (DFs) were then extracted using DFA for each group; thus, six major factors were extracted. Next,
the time–frequency variability of the extracted DFs was examined using multiresolution cross-
correlation analysis (MRCCA) with the following steps: 1) major driving forces and their scales in GWL
fluctuations were identified by comparing maximum correlation coefficients (rmax) between DFs and
the GWL time series and 2) the results were supplemented using the wavelet transformed coherence
(WTC) analysis between DFs and the hydrological time series. Finally, relative contributions of six major
DFs to the GWL fluctuations could be quantitatively assessed by calculating the effective dynamic effi-
ciency (Def). The characteristics and relevant process of the identified six DFs are: 1) WCG1DF4,1 as an
indicative of seasonal agricultural pumping (scales = 64–128 days; rmax = 0.68–0.89; Def � 23.1%); 2)
WCG1DF4,4 representing the cycle of regional groundwater recharge (scales = 64–128 days; rmax =
0.98–1.00; Def � 11.1%); 3) WCG2DF4,1 indicating the complex interaction between the episodes of
precipitation and direct runoff (scales = 2–8 days; rmax = 0.82–0.91; Def � 35.3%) and seasonal GW-RW inter-
action (scales = 64–128 days; rmax = 0.76–0.91; Def � 14.2%); 4) WCG2DF4,4 reflecting the complex effects of
seasonal pervasive pumping and the local recharge cycle (scales = 64–128 days; rmax = 0.86–0.94; Def �
16.4%); 5) WCG3DF4,2 as the result of temporal pumping (scales = 2–8 days; rmax = 0.98–0.99; Def �
7.7%); and 6) WCG3DF4,4 indicating the local recharge cycle (scales = 64–128 days; rmax = 0.76–0.91;
Def � 34.2 %). This study shows that major driving forces controlling GWL time series data in a complex
hydrological setting can be identified and quantitatively evaluated by the combined use of DFA and WA
and applying MRCCA and WTC.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

Hydraulic head in groundwater is one of the most important
metrics in hydrogeology and is essentially measured as groundwa-
ter level (GWL) (Post and von Asmuth, 2013; Todd and Mays,
2005). There are multiple uses of GWL data, for example, to estab-
lish GW flow patterns (Prudhomme et al., 2013), to determine the
response of an aquifer to stresses such as pumping or recharge

(Bredehoeft, 2002; Chae et al., 2010; von Asmuth et al., 2008), to
characterize the interaction between groundwater and surface
water (Huntington and Niswonger, 2012; Menció et al., 2014;
Rosenberry and LaBaugh, 2008), to determine aquifer properties
by examining time variant GWL changes (Ha et al., 2007; Hall
and Moench, 1972; Lee et al., 2017; Moench and Barlow, 2000;
Oh et al., 2016a; Singh, 2004), and to calibrate groundwater flow
models (Foglia et al., 2007; Hansen et al., 2013).

It is now possible to collect GWL data automatically and fre-
quently in observation wells with digital equipment. The frequent
and continuous GWL measurements are used to interpret various
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spatiotemporal characteristics, such as the hydrometeorological
cycle, infiltration and recharge, groundwater � surface water inter-
actions, groundwater use, aquifer geometry, and hydraulic aniso-
tropy and heterogeneity. GWL data as a multi-factor time series
(MFTS) embeds a multitude of processes in the hydrologic cycle
(Post and von Asmuth, 2013). It is usually assumed that there are
common driving forces behind observed MFTS data whereby indi-
vidual observations can be explained by a few latent factors
(Anderson, 1963; Márkus et al., 1999). Several statistical tools have
been suggested to determine latent factors.

Factor analysis (FA) is a conventional statistical tool to deter-
mine latent factors. However, the application of FA to MFTS data
often produces unreliable or misleading results (e.g., spurious
regression), particularly when delayed interdependence occurs
among observed variables (Jolliffe, 2002). Moreover, the majority
of hydrological time series, including precipitation, river water
level (RWL) and GWL, have autoregression and a long memory
effect (Larocque et al., 1998; Schuurmans et al., 2007), mostly
due to continuous and cyclic physical processes with a lagged
response (Whitcher et al., 2002). Thus, there has been a need for
developing new techniques taking into account the dynamic struc-
ture of observations, such as non-stationarity, auto-regression and

heteroscedasticity (Fathian et al., 2016; Ritter and Muñoz-Carpena,
2006; Westra et al., 2014).

Dynamic factor analysis (DFA) has been applied as an alterna-
tive method for MFTS data, revealing its dynamic structure
(Harvey, 1990; Muñoz-Carpena et al., 2005). DFA has been used
to describe the variation among variables using a few underlying
latent variables, denoted as dynamic factors (DFs), reflecting their
dynamic characteristics (Berendrecht and van Geer, 2016; Zuur
et al., 2003). The major advantages of DFA are: 1) the reduction
of the dimensionality of large datasets, improving the efficiency
of the analysis as FA and 2) the applicability to interdependent
and non-stationary time series data (Kuo and Lin, 2010; Shojaei
et al., 2016). In hydrogeology, DFA has been used to recognize
the trends of GWL, including recharge and extraction (Márkus
et al., 1999). For such cases, DFA was combined with a transfer
function noise model to include explanatory variables such as pre-
cipitation and drainage (Berendrecht et al., 2004) or couped with a
simple regression model to identify trends in GWL and surface
water levels (Muñoz-Carpena et al., 2005). For example, Kaplan
et al. (2010) discriminated the factors explaining GWL fluctuations
in coastal floodplain wetlands, including regional groundwater cir-
culation, surface water elevation, and net local recharge. Kovács

Nomenclature

a contraction wavelet coefficient
b translation coefficient
i order of observation station
j order of latent factor
J maximum wavelet decomposition level
k length of time series
M optimal number of dynamic factors
N number of sampled time series
n element of dynamic factor in M
p wavelet resolution level
Q error covariance matrices of ei(t)
q time domain position
rxy cross-correlation coefficient
rmax maximum rxy
R error covariance matrices of gj(t)
S original signal (time series)
s number of latent factors
t time [day]
x input time series
y output time series
�x average of x
�y average of y

Greek symbols
a DF loading
ei(t) white noises of Yi(t)
gj(t) white noises of Fj(t)
hJ,q approximation Wcf of J and q
/ scale function
kp,q detail Wcf of p and q
li(t) level parameter
rx standard deviations of x
ry standard deviations of y
s lag time [day]
w mother wavelet function

Abbreviations
AJ Approximation component of level J

CCA cross-correlation analysis
CCF cross-correlation function
CHB Changnyeong Haman River Barrage gauge station
CHRB Changnyeong Haman River Barrage
Cxy cross-correlogram
CWT continuous wavelet transform
Db5 Daubechies-5 mother wavelet
Def dynamic efficiency, [%]
Dp Detail component of level p
DF(s) dynamic factor(s)
DF loading dynamic factor loading
DFA dynamic factor analysis
DN Deongnam RWL gauge station
DWT discrete wavelet transform
DFM,n nth DF in M of DF model
DG wavelet clustered group for DFs
EDF ratio of sum of Ew at major scales
Ew wavelet energy
fl length of a filter function
f(t) target time series
Fj(t) jth common latent factor
GWL groundwater level
GY Georyonggang RWL gauge station
HAM- GWL observation wells
JD Jindong RWL gauge station
MFTS multifactor time series
MRA multiresolution analysis
MRCCA multiresolution CCA
R_GY Georyonggang rainfall gauge station
R_JD Jindong rainfall gauge station
R_YS Yeongsan rainfall gauge station
RWL river water level
WA wavelet analysis
Wcf(s) wavelet coefficient(s)
WCG wavelet clustered group for GWLs
Yi(t) ith observed time series
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