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a b s t r a c t 

An analysis is reported here for three-time level integration methods following the global 

spectral analysis (GSA) described in High Accuracy Computing Methods , T.K. Sengupta, Cam- 

bridge Univ. Press, USA. The focus is on the second order Adams–Bashforth (AB2) and the 

extrapolation in time (EXT2) methods. Careful distinction is made for the first time step at 

t = 0 by either Euler forward or four-stage, fourth order Runge–Kutta (RK4) time schemes. 

The latter is used to solve a benchmark aeroacoustic problem. Several one-dimensional 

wave propagation models are analyzed: pure advection and advection-diffusion equations. 

Various spatial discretizations are discussed, including Fourier spectral method. Attention 

is paid to the presence of physical and numerical modes as noted in the quadratic equation 

obtained from the difference equation for the model 1D convection equation. It is shown 

that AB2 method is less stable and accurate than EXT2 method, with respect to numerical 

dissipation and dispersion. This is true for the methods, in which the physical mode dom- 

inates over the numerical mode. Presented analysis provides useful guide to analyze any 

three-time level methods. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

In simulating fluid flow and wave phenomena, less attention is paid to study time discretization in depth, except those 

in [31,33,38,40] . It is well known that the order of time derivative present in the governing equation should be equal to 

that of numerical amplification factor, e.g., a governing equation with first time derivative should have only one numerical 

amplification factor, for the physical mode in the continuum, and this is achieved by two-time level methods. Taking first 

order, forward Euler time stepping method turns out to be numerically unstable and for this reason use of four-stage two- 

time level Runge–Kutta (RK4) schemes [31] are used for higher accuracy. For example, optimal three- and four-stage, time 

integration methods along with compact schemes for spatial discretization have been proposed in OCRK 3 and ORK 4 methods, 

which ensures dispersion relation preservation (DRP) properties [2,36] . 

One analyzes one-dimensional convection equation [28,31,34] in the context of evaluating space-time discretization to- 

gether to quantify the main sources of numerical errors. For this, the model equation in Cauchy framework is, 

∂u 

∂t 
= −c 

∂u 

∂x 
; for c > 0 , −∞ ≤ x ≤ + ∞ (1) 
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The motivation for using this governing equation in an infinite domain is that one does not require any boundary condi- 

tion and the initial condition is propagated to the right. Reflections or influence from the boundaries are avoided also. Thus, 

devoid of any need for using boundary condition, gives one an impression that one can study this model equation in a local 

framework. It is noted by Vichnevetsky [46] that the spirit of this assumption is identical to that used in the standard von 

Neumann method of analysis of numerical stability [24] , in which local modes of instability are mathematically described 

as holding every where, and in the present exposition we provide instead a global analysis (also known as global spectral 

analysis or GSA). This GSA method involves estimation of effects of both space and time discretizations considered together 

and is described next. One of the desirable features of GSA is that this is not restricted to periodic problem, unlike von 

Neumann Fourier analysis. 

For the GSA of numerical schemes, let us represent the unknown in the hybrid spectral plane (with time in physical 

plane and space in wavenumber ( k ) plane, with ranges defined by the Nyquist limit, k max = π/h ), given by, 

u (x, t) = 

∫ k max 

−k max 

U(k, t) e ikx dk (2) 

In the continuum limit, h → 0, the limits of the integrand will extend to infinity. Upon spatial discretization in a finite 

domain with h as the uniform grid spacing, one would be working within the Nyquist limit. An exact spatial discretization 

of u ( x , t ) can be obtained as, 

∂u 

∂x 

∣∣∣
exact 

= 

∫ 
ikU(k, t) e ikx dk (3) 

with integral extending from −∞ to + ∞ . In a similar way, the numerically evaluated spatial derivative is expressed as [31] , 

∂u 

∂x 

∣∣∣
num 

= 

∫ k max 

−k max 

ik eq U(k, t) e ikx dk (4) 

In [26,31] , the expressions for k eq have been reported for a large number of spatial discretization by explicit and implicit 

methods. In most analyses of numerical methods, however, only spatial discretization is only considered, as in [26,44] . 

Additionally, most of these analyses [26,28,44–48] were performed for an interior point in isolation (as noted in [46] above). 

One of the early developments in GSA is the introduction of analyzing spatial discretization globally for the full domain [35] , 

as a distinct necessity for implicit spatial discretization. GSA was introduced to overcome this gap in the existing methods 

to calibrate numerical schemes by following the correct numerical dispersion of Eq. (1) . The major finding of this aspect of 

GSA is that computationally the constant phase in Eq. (1) , does not remain a constant. Instead the numerical phase speed 

( c N ) is found to be a function of wavenumber ( k ), an attribute causing dispersion of numerical solution. For Eq. (1) , the exact 

dispersion relation is given by, 

ω = kc. (5) 

In [17,31,33,34] , the numerical dispersion relation has been derived as, 

ω N = kc N . (6) 

In contrast to Eq. (6) , authors in [45,46] and in many other references have taken the numerical dispersion relation to be 

of the form, 

ω N = k eq c (7) 

where k eq is as given by Eq. (4) , originating from spatial discretization alone. This is an assumption based on the fact that 

the prescribed phase speed ( c ) remains constant during numerical integration. Also, taking the numerical wavenumber as 

the equivalent wavenumber for spatial discretization is adopted without rigorous proof. If spatial discretization decides k eq , 

then why shouldn’t one choose ω N corresponding to temporal discretization? These queries are not addressed in framing 

Eq. (7) . In contrast, Eq. (6) is directly obtained by performing spatial and temporal discretization of the governing differential 

equation. This brings us to the very important observation that even when one is solving a constant coefficient equation 

(such as Eq. (1) [34] or the heat equation [32] ) has shown that the coefficient in the governing equation becomes function 

of wave number. Such uncertainty is inherent with scientific computing and this was lost in von Neumann analysis, by 

adopting Eq. (7) , instead of Eq. (6) . In the following, we show the consequence of adopting GSA as opposed to following von 

Neumann analysis for error dynamics. 

By definition, in many physical situations (as in Eq. (1) ) dispersion relation is another form of governing differential 

equation in physical plane, expressed in the spectral plane. The dispersion relation in Eq (7) does not take into the effect of 

temporal discretization and thus lacks fundamentally as an analysis tool. In contrast, the numerical dispersion in Eq. (6) is 

obtained from the simultaneous discretization in space and time for the governing equation. We just note that in some 

physical situations, dispersion relation relates space and time scales of the problem arising from the boundary condition. At 

present, Eq. (1) , expressed as the Cauchy problem does not even require boundary condition to characterize it. 

For Eq. (1) the wrong dispersion relation ( Eq. (7) ) is a consequence of the implicit assumption in von Neumann error and 

stability analysis, which assumes that the numerical solution and corresponding error as function of space and time, e ( x , t ), 
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