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a  b  s  t  r  a  c  t

The  utilization  of  grid-scale  energy  storage  is growing  exponentially  due  its  decreasing  costs  and  added
flexibility  to  providing  numerous  services.  Among  the  currently  available  storage  systems,  batteries  based
on lithium-ion  chemistries  are  poised  to provide  a  significant  share  of  such  flexibility  due  to  their  high
power  and  energy  density,  and relatively  low  cost  per  unit  energy.  However,  research  on  such  systems
has been  segregated  into  focus  on its chemical  properties,  and  focus  on  the  grid  integration  separately.
This  paper  proposes  a data-driven  framework  to characterize  battery  energy  storage  systems  embedded
into  a decision-making  optimization  model.  The  model  embeds  two  mechanisms,  variable  C-rates  and
variable  efficiencies,  so  that  batteries  may  be scheduled  at high-power  (high  C-rate)  operations  to  capture
additional  grid  revenues,  only  if  economical  against  the  cost  of degradation  effects.  The  framework  is
applied  to stationary  battery  energy  storage  systems  in  retail  markets  in order  to  explore  the  improved
energy  arbitrage  benefits.

©  2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The utilization of grid-scale battery energy storage systems
(BESS) is growing exponentially with 340 MW of installed capac-
ity in 2013, and a projected capacity of over 40 GW by 2022 [1].
Such rapid growth is due to BESS’s flexibility in providing numer-
ous grid services including energy arbitrage, frequency regulation,
transmission deferral and reactive power support, among others. Of
the various types of storage technologies, BESS based on lithium-
ion (Li-ion) chemistries are poised to provide a significant share
of such flexibility due to their high power and energy density and
relatively low cost per unit of energy.

Research on BESS has typically been segregated into two main
centers of interest: (i) focus on the chemistry and material prop-
erties, e.g. [2–6], and (ii) focus on the grid integration, operation,
and economic performance, e.g. [7]. This gap is notorious in both
the research community and in commercial usage of batteries;
especially for grid applications where the market-based decision-
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making tools use simplified models that thwart the full operating
flexibility of the battery because cycle-life degradation and charg-
ing/discharging efficiencies are not properly characterized. This
discrepancy is caused by the development of the typical highly non-
linear empirical or theoretical degradation models, e.g. [2–6,8–16],
which introduce a computational burden when optimizing over
a multi-period time horizon. The complexity of typical models
stem from predicting the physicochemical cause of degradation –
active material loss, loss of lithium inventory, mechanical stress,
SEI layer growth, among others. While useful for understanding
the failure mechanism and predicting the remaining capacity or
lifetime of a battery, such detail makes it difficult to extend the
models to various chemistries and/or use cases. Furthermore, the
added mechanistic information does not necessarily aid in the
high level optimal decision-making strategy for power grid par-
ticipation. By combining the economic exploitation of BESS for grid
services with a simple, yet descriptive data-driven characterization
of key internal chemical properties, the decision-making processes
are improved.

Some pioneering works exist on bridging the gap between
battery degradation mechanisms (e.g., growth of resistive surface
films, degradative side reactions, lithium loss, among others) and
grid economics [17–23]. In [17], BESS is explored in the context
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Nomenclature

˛ES+
t charging power loss in period t
˛ES−
t discharging power loss in period t
�t  time interval
�t,i C-rate in each block i in period t
I set of piece-wise blocks with index i
T set of time periods with index t
L̄i max. pre-defined C-rates in each block i
P̄ES maximum power rating

¯SoC
ES

max. state-of-charge
�t electricity prices in period t
SoCES min. state-of-charge
a+ second-degree polynomial coefficient for charging
a− second-degree polynomial coefficient for discharg-

ing
bt state-of-health loss in period t
BCES BESS rated capacity
CES BESS price
eta+ fixed charging efficiency
eta− fixed discharging efficiency
ki degradation slope (%/cycle) in block i
pES+
t charging power of BESS in period t
pES−
t discharging power of BESS in period t
socES+

t charging energy in period t
socES+

t discharging energy in period t
SoCES

t=0 initial state-of-charge
socES

t energy state-of-charge in period t
xt auxiliary binary variable in period t

of a microgrid considering both cycle-life degradation and power
losses due to the charging/discharging. However, the battery model
is assumed to charge up to only ±1C rates (i.e. charge or dis-
charge the full capacity in 1 h), which reduces grid revenues that
could be obtained from variable C-rate operations. Also, cycle-life
degradation and its cost is assumed constant regardless of the bat-
tery chemistry, which simplifies the true effect of degradation. In
[18], an empirical cost function based on battery degradation as
a function of depth-of-discharge (DOD) was incorporated into the
model predictive control of a peak shaving algorithm; however,
the degradation dependence on charging rates are also ignored.
An optimization model was developed in [19] to operate BESS
with stochastic wind resources, while considering degradation. To
ensure the BESS lasts an expected lifetime in years, a maximum
daily degradation percentage was preset in [19], even though there
may  be cases where it is lucrative to discharge the BESS while con-
sidering the increased degradation. Such an approach results in
sub-optimal economic performance. In other works, the trade-off
between charge optimization and battery degradation is explored
in [20–23] for electric vehicle (EV) Li-ion batteries. In [20], empirical
degradation models specific to a single Li-ion chemistry are imple-
mented, as opposed to a data-driven approach that can be applied to
any chemistry. In [22,23], detailed models are developed to perform
the economic tradeoff between EV charge management and degra-
dation. However, variable C-rate operation was not considered and
the models are highly non-linear.

The work in this paper proposes a data-driven method to
characterize BESS embedded into a decision-making optimiza-
tion model. Such data-driven approaches enable the major battery
characteristics along with grid economics to be co-optimized. The
mathematical model is formulated as a mixed integer linear pro-
gram (MILP), which benefits from low computational burden. As
for characteristics, the BESS undergoes cycle-life degradation as a

function of its operation in terms of C-rate charging/discharging, i.e.
amount of energy that is charged/discharged in a certain timestep.
Additionally, the internal resistance of the BESS leads to charg-
ing/discharging power losses which are also functions of the battery
operation. These two mechanisms, variable C-rates and variable
efficiencies, are embedded into the model so that batteries may  be
scheduled at high-power (high C-rate) operations to capture addi-
tional grid revenues, only if economical against the cost of adverse
effects on the BESS.

The main contributions of this work are:

• A complete MILP model for BESS considering the effect on cycle-
life degradation and variable efficiency based on its operations.

• A data-driven method to transform variable C-rate degradation
and efficiencies into economic proxies that can be included into
the optimization framework.

• Application of a BESS exploiting energy arbitrage under local
retail electricity tariffs while considering tradeoff between poten-
tial revenue and degradation.

The remainder of this paper is organized as follows. Section 2
describes the approach for characterizing Li-ion batteries for grid
operations. Section 3 develops the optimization model for BESS and
Section 4 shares the results. Finally, Section 5 concludes the paper.

2. Data analytics of Li-ion batteries

Lithium ion batteries are popular energy storage technologies
due to their high energy density and Coulombic efficiency. How-
ever, the capacity of these chemistries fades over time due to
degradative processes occurring alongside the main electrochemi-
cal reactions [24]. This capacity fade determines the usable lifetime
of the batteries and is a function of how that battery is operated.
In addition to the long-term capacity fade of these batteries, the
internal (ohmic) resistance of the cells leads to power losses during
charging/discharging. These losses affect the Coulombic efficiency
of the battery and are also a function of the battery’s operation [25].
To improve the accuracy of the optimization of this BESS, the effects
of battery operation on the cycle-life and efficiency are considered.

Fig. 1 shows the three-step flow chart, which includes (1) exper-
imental testing, (2) data analysis, and (3) system optimization. Two
experiments are performed during the experimental testing phase,
which are cycle-life testing to characterize the impact of variable
C-rate charging on the BESS, and current measurements to charac-
terize variable efficiencies. In the next step after the experiments
are complete, data analysis takes place to derive mathematical
functions that best represent the experimental data for variable C-
rate and efficiency mechanisms. Lastly, these functions are directly
embedded into the BESS optimization to perform the trade-off
between grid revenues, and battery degradation and power losses.
The next subsections explain in detail the steps presented in Fig. 1.

2.1. Variable C-rate degradation mechanism

Lithium-ion batteries undergo cycle-life degradation as a
function of increased C-rates [5]. C-rate is defined as the charg-
ing/discharging current normalized by the current which would
charge/discharge the nominal capacity of the battery in an hour,
e.g. +1C and +3C are equivalent to charging the battery in 1 h and
20 min, respectively.

In order to obtain representative cycle-life characteristics, Li-ion
nickel-manganese-cobalt (Li-NMC) batteries, specifically 1.5 A-hr
Samsung INR18650 cells [26], were cycled continuously at specified
C-rates using a Maccor 4300M battery cycler [27]. In this context, a
cycle is defined as a full constant current constant voltage (CC-CV)
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