Energy price, regulatory price distortion and economic growth: A case study of China

Xunpeng Shi,⁎ Sizhong Sun

Australia-China Relations Institute, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
Energy Studies Institute, National University of Singapore, 29 Heng Mui Keng Terrace, #10-01, Bid A, Singapore 119620, Singapore
College of Business Law and Governance, James Cook University, Townsville, QLD, 4811, Australia

Abstract

Energy prices are often distorted by government control, which is justified on the grounds that such control will help mitigate the negative impact of price volatility from oil imports, and thus positively affect the domestic economy. In this paper, we show in a two-sector growth model, that regulatory price distortion can negatively affect the economy, and then, based on the model, we empirically estimate the impact of the price distortion on output growth in China, using monthly, time series data from 2005M1 to 2012M12. In contrast to the usual argument for regulatory control to mitigate price volatility, we find that regulatory price distortion negatively affects output growth in China during both the short and long term, because it is robust to different measures of output and price distortion. Hence, the argument that using price regulation to protect economic growth is undermined, and subsequently, this study lends its support to energy price deregulation. A market oriented energy price regime may improve the resilience of the domestic economy to global oil price shocks.

JEL classification:
C2
C6
E2
Q3

Keywords:
Oil price
Regulatory price
Volatility
Economic growth
China

1. Introduction

Policy makers generally believe that oil price shocks exert negative impacts on the domestic economy, and, due to this belief, price regulation in the energy market, such as price capping and subsidies, has been practised for a long time and is still prevalent in many countries (IEA, 2015). Many policy makers prefer to maintain price regulations on the grounds that these measures can insulate the domestic economy from the negative impacts of high oil prices and price volatility in the world market. For example, Brunei, and in the past, Indonesia and Malaysia, fixed their petroleum prices at a very low level (Wu et al., 2012).

Examining the impact of price distortion will have significant implications for policy makers. The consequences of price distortion due to energy price regulation may be beyond policy makers’ expectations. Although policy makers hope such price regulation helps the domestic economy by reducing volatility, the induced distortion may actually exert negative impacts. If it can be demonstrated that the energy price distortion, resulting from regulations to reduce international price volatility, dampens a domestic economy, then the basis for maintaining price regulation will be undermined.

Despite its policy significance, to the best of our knowledge no previous study demonstrates how regulatory energy price distortion affects the relationship between international oil price and national economic development. Previous literature focuses on two distinct aspects of the relationship. On the one hand, debate focuses on the relationship between the international oil price and national economic development. Previous literature focuses on two distinct aspects of the relationship. On the one hand, debate focuses on the relationship between the international oil price and national economic development. Previous literature focuses on two distinct aspects of the relationship. On the one hand, debate focuses on the relationship between the international oil price and national economic development. Previous literature focuses on two distinct aspects of the relationship. On the one hand, debate focuses on the relationship between the international oil price and national economic development. Previous literature focuses on two distinct aspects of the relationship. On the one hand, debate focuses on the relationship between the international oil price and national economic development. Previous literature focuses on two distinct aspects of the relationship. On the one hand, debate focuses on the relationship between the international oil price and national economic development. Previous literature focuses on two distinct aspects of the relationship.

Energy prices are often distorted by government control, which is justified on the grounds that such control will help mitigate the negative impact of price volatility from oil imports, and thus positively affect the domestic economy. In this paper, we show in a two-sector growth model, that regulatory price distortion can negatively affect the economy, and then, based on the model, we empirically estimate the impact of the price distortion on output growth in China, using monthly, time series data from 2005M1 to 2012M12. In contrast to the usual argument for regulatory control to mitigate price volatility, we find that regulatory price distortion negatively affects output growth in China during both the short and long term, because it is robust to different measures of output and price distortion. Hence, the argument that using price regulation to protect economic growth is undermined, and subsequently, this study lends its support to energy price deregulation. A market oriented energy price regime may improve the resilience of the domestic economy to global oil price shocks.

© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.eneco.2017.02.006
0140-9883/© 2017 Elsevier B.V. All rights reserved.
higher and lower oil prices and macroeconomy is asymmetric while
Cunado et al. (2015) found this relationship may be different in different
countries. Studies also extended from examining economic growth to
stocks, household expenditure, etc. (Broadstock et al., 2014; Zhang
et al., 2014) and to examining more complicated relationships (Zhang,
2008). In the Chinese case, the focus of this paper, previous studies (Ju
et al., 2014; Ou et al., 2012; Tang et al., 2010; Zouali, 2007) generally
find a negative impact on economic growth. There is also a detailed
study on how the oil price shocks affects consumption in China
(Zhang et al., 2014).

On the other hand, there are numerous studies examining the rela-
tionship between subsidies and energy consumption, or emissions, or
economic growth, without considering how price movement affects
the outcome. For example, IEA (1999) found that the removal of energy
subsidies would reduce energy consumption and CO2 emissions in eight
non-OECD countries. The IMF (2013) concluded that distorted energy
prices will distort resource allocation to less productive usage, causing
wasteful consumption. Wasteful consumption, as a result of fuel subsi-
dies, was observed in the Nigerian case (Nwachukwu and Chike,
2011). A Chinese case study concludes that energy price distortions
impe
...d the improvement of energy consumption structures (Liu and Li,
2011). He et al. (2014) proved that competitive prices in the electricity
market could achieve energy savings and simultaneously, have a posi-
tive impact on social welfare. Studies on the macroeconomic impact of
energy subsidies often use CGE models and demonstrate that subsidies
have a negative impact on economic growth, employment, and social
welfare (Bhattacharya and Kojima, 2010; Wu et al., 2012).

To fill this gap, this paper intends to revisit the literature on impact
of oil prices on economic development giving consideration to domestic
price distortion due to regulation, both theoretically, through a two-
sector growth model, and empirically, using a time-series analysis of
China’s situation. This paper focuses on China, a large developing econ-
omy. On the one hand, China’s fast economic growth creates a huge de-
mand for resources such as oil, while on the other hand it also maintains
a number of intervention measures, such as price control and manipu-
lated fuel tax, in the domestic liquid fuel (hereafter fuel) market. Since
2009, imported oil has accounted for more than half of total oil con-
sumption in China, and at the same time the oil price has become
more volatile. Investigating the impact of price distortion, which occurs
due to intervention measures, will lead to significant implications for
policy makers, not only in China, but also in other developing economies
that regulate energy prices. Later, our empirical exercise will reveal that
such distortion can do harm to the industrial output. Another feature of
this study is to combine the theoretical modelling with empirical analy-
sis, where the theoretical modelling provides guidance for the empirical
exercise, and the empirical exercise is implemented using a widely used
technique, the Autoregressive Distributed Lag Model (ARDL).

The contribution of this paper is four folds. First, we innovatively in-
troduce the role of fuel price distortion into the well-examined nexus of
oil price shock and macroeconomy. We argue that market distortion
will have a significant negative impact on the relationship. Second, we
illustrate the impact of price distortion in a two-sector growth model.
Our two-sector model is consistent with a recent study that calls for
structural models, including the oil market, to be used to disentangle
cause and effect in the relationship between oil prices and the economy
(Kilian, 2014). Third, we propose a novel measurement of the price dis-
tortion. The price distortion is measured as relative differences between
average gasoline prices in China and the New York Harbor, conventional
gasoline, regular spot price. In contrast, previous studies, such as Lin
and Jiang (2011), use the US gasoline retailing price as a reference, which

1 Note that oil price regulations have different effects on the economy, depending on
whether the country is an oil importing or exporting economy and whether price regula-
tions are imposed on oil consumption or production. In this paper, we focus on the oil
importing country (China) and the price regulations are imposed on oil consumption.

suffers from tax distortions. Fourth, our empirical exercise focuses on
China, a large, fast growing, developing economy with high dependence
on imported oil and price distortion, which leads to significant implica-
tions for policy makers both in China, and other developing countries.

The rest of the paper proceeds as follows. Following the introduc-
tion, in Section 2 we present a discussion of oil consumption and the
energy pricing mechanism in China, providing background information
for the subsequent exercise, and we explain the method of measuring
price distortion in China. Section 3 presents a two-sector growth
model, where we illustrate that oil price distortion indeed affects
the domestic economy. Using implications from the theoretical
model in Section 3, we then empirically test the impact of price distor-
tion in China in Section 4. Section 5 concludes the paper with policy
implications.

2. Fuel pricing mechanism and price distortion in China

Due to its escalating volume of oil consumption, increasing depend-
one on oil imports, and gradually liberalizing domestic oil pricing
mechanism, researchers have expected a more active interaction be-
tween the world oil price and China’s macro-economy (Du et al.,
2010; Wu et al., 2013). Therefore, not surprisingly, China is a good
case to study the role of market distortion and oil price shocks. In this
section, we will discuss the pricing mechanisms in the fuel market,
and measure the associated price distortion.

2.1. The oil consumption and pricing mechanisms

China’s energy consumption, as well as its dependence on imported
oil, has been increasing dramatically in the past two decades and is ex-
pected to continuously grow into the future (IEA, 2015). From 1990 to
2013, China’s GDP grew at an annual rate of 9.9% on average, and is ex-
pected to grow at an annual average rate of 4.8% during the period 2013
to 2040 (IEA, 2015). Such fast economic growth leads to strong demand
for energy. In 2009, China became the world’s largest energy consumer.

Meanwhile, China has successfully adopted a gradual approach to
removing subsidies (Lin and Jiang, 2011). Before 1998, energy prices
were heavily regulated, and often under-priced, due to the notion that
energy is critical to economic growth and social development (Ouyang
and Sun, 2015). In the 1980s and 1990s, China adopted a dual-track
pricing system, under which prices for most oil products were tightly
regulated, while the rest were traded in the market, more or less freely.
A market-based petroleum pricing mechanism was adopted in 1998
and in October 2001, oil product prices were linked to major interna-
tional futures markets (Du et al., 2010). They were first benchmarked
against the Singapore futures market, and later, in 2001, the benchmark
was extended to Singapore, Rotterdam and New York futures markets,
where an unpublished weight was used in setting domestic prices (Du
et al., 2010). In 2006, this price benchmark was changed from refinery
product prices to the Brent, Dubai, and Minas crude oil prices. This
price benchmarking, while it enables domestic markets to follow inter-
national markets, is also intended to insulate domestic markets from
the volatility of oil prices in the global markets (IEA, 2010). Due to this
intention, even with those liberalization reforms implemented in early
2000, the pricing regime was plagued by ad hoc subsidies and non-
transparent, inconsistently enforced, pricing behaviours.

In 2009, China introduced a formula based pricing mechanism for oil
products. According to this formula, domestic fuel prices may be adjust-
ed when international crude oil prices, measured as a weighted average
of the Brent, Dubai and Cinta crude oil prices, change by more than 4%
over a period of 22 working days (Government of China, 2008).

This pricing mechanism tends to smooth the price volatility in the
fuel markets. When the average crude oil price is below US$80 a barrel,
domestic gasoline prices move relatively freely; between US$80 and
US$130 a barrel, domestic prices are responsive, but cannot increase
as much as the crude oil price does; and above US$130, fuel tax breaks
دریافت فوری
متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات