Experimental investigation on the feasibility of dry and cryogenic machining as sustainable strategies when turning Ti6Al4V produced by Additive Manufacturing

A. Bordin, S. Sartori, S. Bruschi, A. Ghiotti

PII: S0959-6526(16)31561-X
DOI: 10.1016/j.jclepro.2016.09.209
Reference: JCLP 8169

To appear in: Journal of Cleaner Production

Received Date: 23 July 2015
Revised Date: 13 September 2016
Accepted Date: 28 September 2016

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Experimental investigation on the feasibility of dry and cryogenic machining as sustainable strategies when turning Ti6Al4V produced by Additive Manufacturing

A. Bordina*, S. Sartoria, S. Bruschia, A. Ghiottia

aDept. Of Industrial Engineering, University of Padova, Via Venezia 1, 35131, Padova, Italy

* Corresponding author. Tel.: +39 049 8276819; fax: +39 049 8276816. E-mail address: bordin.alberto.dii@gmail.com

Abstract

The performances of the cutting fluids have recently been under investigation to drive machining operations towards cleaner and more sustainable targets. Several efforts are being made to test new formulations of coolants and to implement cooling strategies alternative to standard flooding. Cryogenic cooling seems to be an efficient solution to enhance the process sustainability when machining difficult-to-cut metals, such as nickel, cobalt and titanium alloys. Among its several advantages, no contaminants are left on the chips and workpieces, hence reducing the chips disposal costs and limiting skin and breath diseases for the machine tool operators. Furthermore, in case of production of surgical prostheses, it can help reducing the cleaning steps before the final sterilization. The present work investigates the feasibility of using dry cutting and cryogenic cooling in semi-finishing turning of the Ti6Al4V titanium alloy produced by the Additive Manufacturing technology known as Electron Beam Melting when compared to standard flood cooling. For this purpose, the effects of the cutting speed and feed rate on the tool wear, surface integrity, and chip morphology were investigated as a function of the applied cooling strategy. The experimental findings show that the cryogenic cooling assures better performances than dry and wet machining by reducing the tool wear, improving the surface finish and the chip breakability, whereas dry cutting provokes more surface defects and severe tool wear. Therefore, from an environmental point of view, cryogenic machining can represent a sustainable process for manufacturing surgical prostheses made of AM titanium alloys.
دریافت فوری
متن کامل مقاله
امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات