دانلود مقاله ISI انگلیسی شماره 147069
ترجمه فارسی عنوان مقاله

تاثیر طرح های پیش بینی دوگانه بر کاهش تعداد انتقال در شبکه های حسگر

عنوان انگلیسی
The impact of dual prediction schemes on the reduction of the number of transmissions in sensor networks
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
147069 2017 40 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Computer Communications, Volume 112, 1 November 2017, Pages 58-72

ترجمه کلمات کلیدی
شبکه های سنسور، علم اطلاعات، پیش بینی ها، کاهش اطلاعات، مدل،
کلمات کلیدی انگلیسی
Sensor networks; Data science; Predictions; Data reduction; Model;
پیش نمایش مقاله
پیش نمایش مقاله  تاثیر طرح های پیش بینی دوگانه بر کاهش تعداد انتقال در شبکه های حسگر

چکیده انگلیسی

Future Internet of Things (IoT) applications will require that billions of wireless devices transmit data to the cloud frequently. However, the wireless medium access is pointed as a problem for the next generations of wireless networks; hence, the number of data transmissions in Wireless Sensor Networks (WSNs) can quickly become a bottleneck, disrupting the exponential growth in the number of interconnected devices, sensors, and amount of produced data. Therefore, keeping a low number of data transmissions is critical to incorporate new sensor nodes and measure a great variety of parameters in future generations of WSNs. Thanks to the high accuracy and low complexity of state-of-the-art forecasting algorithms, Dual Prediction Schemes (DPSs) are potential candidates to optimize the data transmissions in WSNs at the finest level because they facilitate for sensor nodes to avoid unnecessary transmissions without affecting the quality of their measurements. In this work, we present a sensor network model that uses statistical theorems to describe the expected impact of DPSs and data aggregation in WSNs. We aim to provide a foundation for future works by characterizing the theoretical gains of processing data in sensors and conditioning its transmission to the predictions’ accuracy. Our simulation results show that the number of transmissions can be reduced by almost 98% in the sensor nodes with the highest workload. We also detail the impact of predicting and aggregating transmissions according to the parameters that can be observed in common scenarios, such as sensor nodes’ transmission ranges, the correlation between measurements of different sensors, and the period between two consecutive measurements in a sensor.